Skip to main content
Log in

Structure and magnetic properties of annealed metastable FeAg/Pt films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

FeAg and FeAg/Pt films were prepared by dc magnetron sputtering at room temperature. The effects of Ag volume fraction in FeAg films and postannealing temperature and time on structure and magnetic properties of FeAg and FeAg/Pt films have been investigated. The results show that the as-deposited FeAg films are metastable. After annealing at 300°C, the phase separation of metastable FeAg films happened and the highest coercivity is obtained in Fe50Ag50/Pt film. With increasing annealing temperature, the ordering and the magnetic properties of the Fe50Ag50/Pt films were improved. When the Fe50Ag50/Pt films are annealed at 600°C for different annealing times, a long annealing time enhances the ordering of the metastable Fe50Ag50/Pt films and affects the orientation development. When the films are annealed for a long time, the grain size and the magnetic domain size also increase, which lead to an increase of correlation length due to the growth of FePt grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Weller, T. McDaniel, in Advanced Magnetic Nanostructures, ed. by D. Sellmyer, R. Skomski (Springer, Berlin, 2006), p. 295

    Chapter  Google Scholar 

  2. K. Kang, Z.G. Zhang, C. Papusoi, T. Suzuki, Appl. Phys. Lett. 82, 3284 (2003)

    Article  ADS  Google Scholar 

  3. Y. Zhu, J.W. Cai, Appl. Phys. Lett. 87, 032504 (2005)

    Article  ADS  Google Scholar 

  4. C. Feng, B.H. Li, G. Han, J. Teng, Y. Jiang, Q.L. Liu, G.H. Yu, Appl. Phys. Lett. 88, 232109 (2006)

    Article  ADS  Google Scholar 

  5. J.W. Cao, J. Cai, Y. Liu, Z. Yang, F.L. Wei, A.L. Xia, B.S. Han, J.M. Bai, J. Appl. Phys. 99, 08F901 (2006)

    Article  Google Scholar 

  6. Y.S. Yu, H.B. Li, L.W. Li, M. Liu, W.D. Fei, J. Magn. Magn. Mater. 320, L125 (2008)

    Article  ADS  Google Scholar 

  7. Z.L. Zhao, J. Ding, K. Inaba, J.S. Chen, J.P. Wang, Appl. Phys. Lett. 83, 2196 (2003)

    Article  ADS  Google Scholar 

  8. T. Maeda, T. Kai, A. Kikitsu, T. Nagase, J.I. Akiyama, Appl. Phys. Lett. 80, 2147 (2002)

    Article  ADS  Google Scholar 

  9. Y.K. Takahashi, M. Ohnuma, K. Hono, J. Magn. Magn. Mater. 246, 259 (2002)

    Article  ADS  Google Scholar 

  10. S.C. Chou, C.C. Yu, Y. Liou, Y.D. Yao, D.H. Wei, T.S. Chin, M.F. Tai, J. Appl. Phys. 95, 7276 (2004)

    Article  ADS  Google Scholar 

  11. J.J. Lin, Z.Y. Pan, S. Karamat, S. Mahmood, P. Lee, T.L. Tan, S.V. Springham, R.S. Rawat, J. Phys., D. Appl. Phys. 41, 095001 (2008)

    Article  ADS  Google Scholar 

  12. C.H. Lai, C.H. Yang, C.C. Chiang, Appl. Phys. Lett. 83, 4550 (2003)

    Article  ADS  Google Scholar 

  13. D. Ravelosona, C. Chappert, V. Mathet, H. Bernas, Appl. Phys. Lett. 76, 236 (2000)

    Article  ADS  Google Scholar 

  14. J.S. Chen, B.C. Lim, J.F. Hu, Y.F. Ding, G.M. Chow, G. Ju, J. Phys., D. Appl. Phys. 41, 205001 (2008)

    Article  ADS  Google Scholar 

  15. J.S. Chen, B.C. Lim, J.F. Hu, Y.K. Lim, B. Liu, G.M. Chow, Appl. Phys. Lett. 90, 042508 (2007)

    Article  ADS  Google Scholar 

  16. T. Shima, T. Moriguchi, T. Seki, S. Mitani, K. Takanashi, J. Appl. Phys. 93, 7238 (2003)

    Article  ADS  Google Scholar 

  17. C.H. Lai, C.H. Yang, C.C. Chiang, T. Balaji, T.K. Tseng, Appl. Phys. Lett. 85, 4430 (2004)

    Article  ADS  Google Scholar 

  18. S. Kang, J.W. Harrell, D.E. Nikles, Nano Lett. 2, 1033 (2002)

    Article  ADS  Google Scholar 

  19. C.L. Platt, K.W. Wierman, E.B. Svedberg, R. van de Veerdonk, J.K. Howard, A.G. Roy, D.E. Laughlin, J. Appl. Phys. 92, 6104 (2002)

    Article  ADS  Google Scholar 

  20. Y.N. Hsu, S. Jeong, D.E. Laughlin, J. Appl. Phys. 89, 7068 (2001)

    Article  ADS  Google Scholar 

  21. K. Kang, Z.G. Zhang, C. Papusoi, T. Suzuki, Appl. Phys. Lett. 82, 3284 (2003)

    Article  ADS  Google Scholar 

  22. Z.L. Zhao, J. Ding, J.S. Chen, J.P. Wang, Appl. Phys. Lett. 83, 2196 (2003)

    Article  ADS  Google Scholar 

  23. J. Wan, Y. Huang, Y. Zhang, M.J. Bonder, G.C. Hadjipanayis, D. Weller, J. Appl. Phys. 97, 10J121 (2005)

    Article  Google Scholar 

  24. B.H. Li, C. Feng, T. Yang, P. Hwang, J. Teng, G.H. Yu, F.W. Zhu, J. Appl. Phys. 99, 016102 (2006)

    Article  ADS  Google Scholar 

  25. C.T. Yu, Y. Yang, Y.Q. Zhou, S.X. Li, W.Y. Lai, Z.X. Wang, J. Appl. Phys. 76, 6487 (1994)

    Article  ADS  Google Scholar 

  26. B.W. Robart, Acta Metall. 2, 597 (1954)

    Article  Google Scholar 

  27. J.S. Chen, J.F. Hu, B.C. Lim, Y.K. Lim, B. Liu, G.M. Chow, G. Ju, J. Appl. Phys. 103, 07F517 (2008)

    Article  Google Scholar 

  28. H. Zeng, M.L. Yan, N. Powers, D.J. Sellmyer, Appl. Phys. Lett. 80, 2350 (2002)

    Article  ADS  Google Scholar 

  29. Y.K. Takahashi, T.O. Seki, K. Hono, T. Shima, K. Takanashi, J. Appl. Phys. 96, 475 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. D. Fei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Y.S., Li, H., Li, W.L. et al. Structure and magnetic properties of annealed metastable FeAg/Pt films. Appl. Phys. A 103, 301–307 (2011). https://doi.org/10.1007/s00339-010-6102-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-6102-5

Keywords

Navigation