Article

Applied Physics A

, Volume 79, Issue 1, pp 1-14

Organic p-i-n solar cells

  • B. MaennigAffiliated withInstitut für Angewandte Photophysik, Technische Universität Dresden Email author 
  • , J. DrechselAffiliated withInstitut für Angewandte Photophysik, Technische Universität Dresden
  • , D. GebeyehuAffiliated withInstitut für Angewandte Photophysik, Technische Universität Dresden
  • , P. SimonAffiliated withMax Planck Institute for Chemical Physics of Solids, Dresden
  • , F. KozlowskiAffiliated withInstitut für Angewandte Photophysik, Technische Universität Dresden
  • , A. WernerAffiliated withInstitut für Angewandte Photophysik, Technische Universität Dresden
  • , F. LiAffiliated withInstitut für Angewandte Photophysik, Technische Universität Dresden
  • , S. GrundmannAffiliated withInstitut für Angewandte Photophysik, Technische Universität Dresden
  • , S. SonntagAffiliated withInstitut für Angewandte Photophysik, Technische Universität Dresden
    • , M. KochAffiliated withInstitut für Angewandte Photophysik, Technische Universität Dresden
    • , K. LeoAffiliated withInstitut für Angewandte Photophysik, Technische Universität Dresden
    • , M. PfeifferAffiliated withInstitut für Angewandte Photophysik, Technische Universität Dresden
    • , H. HoppeAffiliated withLinz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University
    • , D. MeissnerAffiliated withLinz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University
    • , N.S. SariciftciAffiliated withLinz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University
    • , I. RiedelAffiliated withEnergy and Semiconductor Research Laboratory, Institute of Physics, University of Oldenburg
    • , V. DyakonovAffiliated withEnergy and Semiconductor Research Laboratory, Institute of Physics, University of Oldenburg
    • , J. ParisiAffiliated withEnergy and Semiconductor Research Laboratory, Institute of Physics, University of Oldenburg

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

We introduce a p-i-n-type heterojunction architecture for organic solar cells where the active region is sandwiched between two doped wide-gap layers. The term p-i-n means here a layer sequence in the form p-doped layer, intrinsic layer and n-doped layer. The doping is realized by controlled co-evaporation using organic dopants and leads to conductivities of 10-4 to 10-5 S/cm in the p- and n-doped wide-gap layers, respectively. The photoactive layer is formed by a mixture of phthalocyanine zinc (ZnPc) and the fullerene C60 and shows mainly amorphous morphology. As a first step towards p-i-n structures, we show the advantage of using wide-gap layers in M-i-p-type diodes (metal layer–intrinsic layer–p-doped layer). The solar cells exhibit a maximum external quantum efficiency of 40% between 630-nm and 700-nm wavelength. With the help of an optical multilayer model, we optimize the optical properties of the solar cells by placing the active region at the maximum of the optical field distribution. The results of the model are largely confirmed by the experimental findings. For an optically optimized device, we find an internal quantum efficiency of around 82% under short-circuit conditions. Adding a layer of 10-nm thickness of the red material N,N-dimethylperylene-3,4:9,10-dicarboximide (Me-PTCDI) to the active region, a power-conversion efficiency of 1.9% for a single cell is obtained. Such optically thin cells with high internal quantum efficiency are an important step towards high-efficiency tandem cells. First tandem cells which are not yet optimized already show 2.4% power-conversion efficiency under simulated AM 1.5 illumination of 125 mW/cm2 .