Applied Physics A

, Volume 79, Issue 1, pp 1–14

Organic p-i-n solar cells

Authors

    • Institut für Angewandte PhotophysikTechnische Universität Dresden
  • J. Drechsel
    • Institut für Angewandte PhotophysikTechnische Universität Dresden
  • D. Gebeyehu
    • Institut für Angewandte PhotophysikTechnische Universität Dresden
  • P. Simon
    • Max Planck Institute for Chemical Physics of Solids, Dresden
  • F. Kozlowski
    • Institut für Angewandte PhotophysikTechnische Universität Dresden
  • A. Werner
    • Institut für Angewandte PhotophysikTechnische Universität Dresden
  • F. Li
    • Institut für Angewandte PhotophysikTechnische Universität Dresden
  • S. Grundmann
    • Institut für Angewandte PhotophysikTechnische Universität Dresden
  • S. Sonntag
    • Institut für Angewandte PhotophysikTechnische Universität Dresden
  • M. Koch
    • Institut für Angewandte PhotophysikTechnische Universität Dresden
  • K. Leo
    • Institut für Angewandte PhotophysikTechnische Universität Dresden
  • M. Pfeiffer
    • Institut für Angewandte PhotophysikTechnische Universität Dresden
  • H. Hoppe
    • Linz Institute for Organic Solar Cells (LIOS), Physical ChemistryJohannes Kepler University
  • D. Meissner
    • Linz Institute for Organic Solar Cells (LIOS), Physical ChemistryJohannes Kepler University
  • N.S. Sariciftci
    • Linz Institute for Organic Solar Cells (LIOS), Physical ChemistryJohannes Kepler University
  • I. Riedel
    • Energy and Semiconductor Research Laboratory, Institute of PhysicsUniversity of Oldenburg
  • V. Dyakonov
    • Energy and Semiconductor Research Laboratory, Institute of PhysicsUniversity of Oldenburg
  • J. Parisi
    • Energy and Semiconductor Research Laboratory, Institute of PhysicsUniversity of Oldenburg
Article

DOI: 10.1007/s00339-003-2494-9

Cite this article as:
Maennig, B., Drechsel, J., Gebeyehu, D. et al. Appl. Phys. A (2004) 79: 1. doi:10.1007/s00339-003-2494-9

Abstract

We introduce a p-i-n-type heterojunction architecture for organic solar cells where the active region is sandwiched between two doped wide-gap layers. The term p-i-n means here a layer sequence in the form p-doped layer, intrinsic layer and n-doped layer. The doping is realized by controlled co-evaporation using organic dopants and leads to conductivities of 10-4 to 10-5 S/cm in the p- and n-doped wide-gap layers, respectively. The photoactive layer is formed by a mixture of phthalocyanine zinc (ZnPc) and the fullerene C60 and shows mainly amorphous morphology. As a first step towards p-i-n structures, we show the advantage of using wide-gap layers in M-i-p-type diodes (metal layer–intrinsic layer–p-doped layer). The solar cells exhibit a maximum external quantum efficiency of 40% between 630-nm and 700-nm wavelength. With the help of an optical multilayer model, we optimize the optical properties of the solar cells by placing the active region at the maximum of the optical field distribution. The results of the model are largely confirmed by the experimental findings. For an optically optimized device, we find an internal quantum efficiency of around 82% under short-circuit conditions. Adding a layer of 10-nm thickness of the red material N,N-dimethylperylene-3,4:9,10-dicarboximide (Me-PTCDI) to the active region, a power-conversion efficiency of 1.9% for a single cell is obtained. Such optically thin cells with high internal quantum efficiency are an important step towards high-efficiency tandem cells. First tandem cells which are not yet optimized already show 2.4% power-conversion efficiency under simulated AM 1.5 illumination of 125 mW/cm2 .

Copyright information

© Springer-Verlag 2004