Skip to main content

Advertisement

Log in

Connectivity and genetic structure of the queen conch on the Mesoamerican Reef

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

The queen conch (Strombus gigas) is a commercially important marine invertebrate that is widely distributed throughout the western Atlantic, from Bermuda to Brazil. Intense exploitation has resulted in a decrease in population numbers of this species, which is listed as protected from commercial exploitation under IUCN and CITES. Previous studies on population genetics have demonstrated contrasting results in terms of the population structure of S. gigas. This research analyzed the genetic connectivity of the queen conch over a wide area of the Mesoamerican Reef System to determine whether S. gigas presents one panmictic population or a more complex structure. Furthermore, we evaluated the risk of local extinction by establishing the genetic diversity of the studied populations. High resolution was obtained for the five ISSR markers used for a total of 190 individuals, from seven localities along the Mesoamerican Reef. Our results reject the panmictic structure hypothesis for the queen conch in the study area and demonstrate genetic patchiness, indicating general homogeneity among localities that present an isolation-by-distance pattern. However, some genetic temporal variation was confirmed for the Cozumel locality. Furthermore, our results reveal self-recruitment for the Alacranes Reef aggregation and suggest sufficient connectivity with localities on the Caribbean coast to maintain high genetic diversity. With regard to genetic diversity, the results demonstrate that the queen conch is not genetically threatened in the study area. This is probably due to high annual recruitment within Caribbean queen conch aggregations, and suggests that S. gigas is a highly resilient organism. We advocate that the appropriate management of S. gigas (fishing quota and/or closed season) must be followed to attain a rapid recovery of queen conch populations. This study represents a fundamental step in the understanding of the dynamic population structure of S. gigas in the Mesoamerican Reef and is an important contribution toward improving the future management of this commercially protected species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acosta CA (2006) Impending trade suspensions of Caribbean queen conch under CITES. Fisheries 31:601–606

    Article  Google Scholar 

  • Aglieri G, Papetti C, Zane L, Milisenda G, Boero F, Piraino S (2014) First evidence of inbreeding, relatedness and chaotic genetic patchiness in the holoplanktonic jellyfish Pelagia noctiluca (Scyphozoa, Cnidaria). PLoS One 9:e99647

    Article  PubMed  PubMed Central  Google Scholar 

  • Aljanabi SM, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 25:4692–4693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnaud-Haond S, Vonau V, Rouxel C, Bonhomme F, Prou J, Goyard E, Boudry P (2008) Genetic structure at different spatial scales in the pearl oyster (Pinctada margaritifera cumingii) in French Polynesian lagoons: beware of sampling strategy and genetic patchiness. Mar Biol 155:147–157

    Article  Google Scholar 

  • Barilani M, Sfougaris A, Giannakopoulos A, Mucci N, Tabarroni C, Randi E (2007) Detecting introgressive hybridisation in rock partridge populations (Alectoris graeca) in Greece through Bayesian admixture analyses of multilocus genotypes. Conserv Genet 8:343–354

    Article  CAS  Google Scholar 

  • Behura SK (2006) Molecular marker systems in insects: current trends and future avenues. Mol Ecol 15:3087–3113

    Article  CAS  PubMed  Google Scholar 

  • Bonin A, Bellemain E, Bronken Eidesen P, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273

    Article  CAS  PubMed  Google Scholar 

  • Campton D, Berg C Jr, Robison L, Glazer R (1992) Genetic patchiness among populations of queen conch Strombus gigas in the Florida Keys and Bimini. Fishery Bulletin 90:250–259

    Google Scholar 

  • Carrillo L, Johns EM, Smith RH, Lamkin JT, Largier JL (2015) Pathways and hydrography in the Mesoamerican Barrier Reef System part 1: circulation. Cont Shelf Res 109:164–176

    Article  Google Scholar 

  • Casu M, Casu D, Lai T, Cossu P, Curini-Galletti M (2006) Inter-simple sequence repeat markers reveal strong genetic differentiation among populations of the endangered mollusc Patella ferruginea (Gastropoda: Patellidae) from two Sardinian marine protected areas. Mar Biol 149:1163–1174

    Article  CAS  Google Scholar 

  • Casu M, Maltagliati F, Cossu P, Lai T, Galletti MC, Castelli A, Commito JA (2005) Fine-grained spatial genetic structure in the bivalve Gemma gemma from Maine and Virginia (USA), as revealed by inter-simple sequence repeat markers. J Exp Mar Bio Ecol 325:46–54

    Article  Google Scholar 

  • Casu M, Sanna D, Cossu P, Lai T, Francalacci P, Curini-Galletti M (2011a) Molecular phylogeography of the microturbellarian Monocelis lineata (Platyhelminthes: Proseriata) in the north-east Atlantic. Biol J Linn Soc 103:117–135

    Article  Google Scholar 

  • Casu M, Rivera-Ingraham GA, Cossu P, Lai T, Sanna D, Dedola GL, Sussarellu R, Sella G, Cristo B, Curini-Galletti M, García-Gómez JC (2011b) Patterns of spatial genetic structuring in the endangered limpet Patella ferruginea: implications for the conservation of a Mediterranean endemic. Genetica 139:1293–1308

    Article  CAS  PubMed  Google Scholar 

  • CONANP (Comisión Nacional de Áreas Naturales Protegidas) (2007) Estudio Previo Justificativo para el establecimiento del Área de Protección de Flora y Fauna Isla de Cozumel, Quintana Roo, México. SEMARNAT, Mexico

  • Cossu P, Maltagliati F, Lai T, Casu M, Curini-Galletti M, Castelli A (2012) Genetic structure of Hediste diversicolor (Polychaeta, Nereididae) from the northwestern Mediterranean as revealed by DNA inter-simple sequence repeat (ISSR) markers. Mar Ecol Prog Ser 452:171–178

    Article  Google Scholar 

  • Cossu P, Dedola GL, Scarpa F, Sanna D, Lai T, Maltagliati F, Curini-Galletti M, Casu M (2015) Patterns of spatial genetic variation in Patella ulyssiponensis: insights from the western Mediterranean marine ecoregion. Hydrobiologia 755:39–55

    Article  CAS  Google Scholar 

  • Cowen RK, Sponaugle S (2009) Larval dispersal and marine population connectivity. Annu Rev Mar Sci 1:443–466

    Article  Google Scholar 

  • David P, Perdieu MA, Pernot AF, Jarne P (1997) Fine-grained spatial and temporal population genetic structure in the marine bivalve Spisula ovalis. Evolution 51:1318–1322

    Article  Google Scholar 

  • Davis M, Bolton CA, Stoner A (1993) A comparison of larval development, growth, and shell morphology in three carribean Strombus species. Veliger 36:236–244

    Google Scholar 

  • de Aranzamendi MC, Sahade R, Tatián M, Chiappero MB (2008) Genetic differentiation between morphotypes in the Antarctic limpet Nacella concinna as revealed by inter-simple sequence repeat markers. Mar Biol 154:875–885

    Article  CAS  Google Scholar 

  • Delgado GA, Glazer RA, Hawtof D, Aranda DA, Rodríguez-Gil LA, de Jesús-Navarrete A (2006) Do queen conch (Strombus gigas) larvae recruiting to the Florida Keys originate from upstream sources? Evidence from plankton and drifter studies. In: Grober-Dunsmore R, Keller BD (eds) Caribbean connectivity: implications for marine protected area management. Proceedings of a special symposium 9–11 Nov 2006, 59th annual meeting of the Gulf and Caribbean Fisheries Institute, Belize City, Belize, vol 9, pp 29–41

  • Dixon MD (2011) Population genetic structure and natal philopatry in the widespread North American bat Myotis lucifugus. J Mammal 92:1343–1351

    Article  Google Scholar 

  • Dong S, Shentu X, Pan Y, Bai X, Yu X, Wang H (2011) Evaluation of genetic diversity in the golden apple snail, Pomacea canaliculata (Lamarck), from different geographical populations in China by inter simple sequence repeat (ISSR). African Journal of Biotechnology 10:1777–1783

    CAS  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Res 4:359–361

    Article  Google Scholar 

  • Ehlers A, Worm B, Reusch TB (2008) Importance of genetic diversity in eelgrass Zostera marina for its resilience to global warming. Mar Ecol Prog Ser 355:1–7

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction sites. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993

    Article  PubMed  PubMed Central  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2005) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  • Freeland JR, Kirk H, Petersen SD (2011) Molecular ecology, 2nd edn. Wiley, Chichester

    Book  Google Scholar 

  • Goetze E (2011) Population differentiation in the open sea: insights from the pelagic copepod Pleuromamma xiphias. Integr Comp Biol 51:580–597

    Article  PubMed  Google Scholar 

  • Gongora M (2006) Preliminary analysis of growth of queen conch, Strombus gigas, in San Pedro, Belize. Proceedings of the Gulf and Caribbean Fisheries Institute 47:824–834

    Google Scholar 

  • Gyory J, Mariano AJ, Ryan EH (2013) Ocean surface currents: the Yucatan current. http://oceancurrents.rsmas.miami.edu/caribbean/yucatan.html

  • Harris C (2008) Assessment of multiple paternity for the queen conch, Strombus gigas. Ph.D. thesis, Florida Atlantic University, Boca Raton, FL

  • Hastings A, Harrison S (1994) Metapopulation dynamics and genetics. Annu Rev Ecol Syst 25:167–188

    Article  Google Scholar 

  • Hedgecock D (1994) Temporal and spatial genetic structure of marine animal populations in the California current. California Cooperative Oceanic Fisheries Investigations Reports 35:73–81

    Google Scholar 

  • Hedgecock D, Barber P, Edmands S (2007) Genetic approaches to measuring connectivity. Oceanography (Wash DC) 20:70

    Article  Google Scholar 

  • Hoffman JI, Peck LS, Linse K, Clarke A (2011) Strong population genetic structure in a broadcast-spawning Antarctic marine invertebrate. J Hered 102:55–66

    Article  CAS  PubMed  Google Scholar 

  • Hoffman JI, Clarke A, Clark MS, Fretwell P, Peck LS (2012) Unexpected fine-scale population structure in a broadcast-spawning Antarctic marine mollusc. PLoS One 7:e32415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holsinger KE, Lewis PO (2003) Hickory: a package for analysis of population genetic data v1. 0. Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, USA

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    Article  PubMed  PubMed Central  Google Scholar 

  • Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53:1898–1914

    Article  Google Scholar 

  • Iversen ES, Jory DE, Bannerot SP (1986) Predation on queen conchs, Strombus gigas, in the Bahamas. Bull Mar Sci 39:61–75

    Google Scholar 

  • Johnson MS, Black R (1982) Chaotic genetic patchiness in an intertidal limpet, Siphonaria sp. Mar Biol 70:157–164

    Article  Google Scholar 

  • Johnson MS, Black R (1984) Pattern beneath the chaos: the effect of recruitment on genetic patchiness in an intertidal limpet. Evolution 38:1371–1383

    Article  Google Scholar 

  • Landínez-García RM, Rangel Medrano JD, Castro González ER, Márquez E (2011) Variación genética temporal del caracol pala (Strombus gigas) evidenciada por microsatélites en el atolón bolívar, archipiélago de San Andrés, providencia y Santa Catalina. Cuadernos del Caribe 14:91–101

    Google Scholar 

  • Larson RJ, Julian RM (1999) Spatial and temporal genetic patchiness in marine populations and their implications for fisheries management. California Cooperative Oceanic Fisheries Investigations Reports 40:94–99

    Google Scholar 

  • Levin II, Parker PG (2012) Philopatry drives genetic differentiation in an island archipelago: comparative population genetics of Galapagos Nazca boobies (Sula granti) and great frigatebirds (Fregata minor). Ecol Evol 2:2775–2787

    Article  PubMed  PubMed Central  Google Scholar 

  • Machkour-M’Rabet S, Hénaut Y, Calmé S, Legal L (2012) When landscape modification is advantageous for protected species. The case of a synanthropic tarantula, Brachypelma vagans. J Insect Conserv 16:479–488

    Article  Google Scholar 

  • Machkour-M’Rabet S, Leberger R, León-Cortés JL, Gers C, Legal L (2014) Population structure and genetic diversity of the only extant Baroninae swallowtail butterfly, Baronia brevicornis, revealed by ISSR markers. J Insect Conserv 18:385–396

    Article  Google Scholar 

  • Machkour-M’Rabet S, Hénaut Y, Dor A, Pérez-Lachaud G, Pélissier C, Gers C, Legal L (2009) ISSR (inter-simple sequence repeats) as molecular markers to study genetic diversity in tarantulas (Araneae, Mygalomorphae). J Arachnol 37:10–14

    Article  Google Scholar 

  • Manrique-Poyato MI, López-León MD, Gómez R, Perfectti F, Camacho JPM (2013) Population genetic structure of the grasshopper Eyprepocnemis plorans in the south and east of the Iberian Peninsula. PLoS One 8:e59041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mariette S, Le Corre V, Austerlitz F, Kremer A (2002) Sampling within the genome for measuring within-population diversity: trade-offs between markers. Mol Ecol 11:1145–1156

    Article  CAS  PubMed  Google Scholar 

  • Márquez E, Landínez-García RM, Ospina-Guerrero SP, Segura-Caro JA, Prada M, Castro E, Correo JL, Borda C (2012) Genetic analysis of queen conch Strombus gigas from the southwest Caribbean. In: Proceedings of the 65th conference of the Gulf and Caribbean Fisheries Institute, Santa Marta, Columbia, pp 410–416

  • Martín JP, Sánchez-Yélamo MD (2000) Genetic relationships among species of the genus Diplotaxis (Brassicaceae) using inter-simple sequence repeat markers. Theor Appl Genet 101:1234–1241

    Article  Google Scholar 

  • Mitton JB, Berg CJ, Orr KS (1989) Population structure, larval dispersal, and gene flow in the queen conch, Strombus gigas, of the Caribbean. Biol Bull 177:356–362

    Article  Google Scholar 

  • Morales F (2008) Genetic signals of metapopulation structure of the queen conch, Strombus gigas, throughout northern Intra-American Sea. Proceedings of the Gulf and Caribbean Fisheries Institute 60:666

    Google Scholar 

  • Nelson MF, Anderson NO (2013) How many marker loci are necessary? analysis of dominant marker data sets using two popular population genetic algorithms. Ecol Evol 3:3455–3470

    Article  PubMed  PubMed Central  Google Scholar 

  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155

    Article  CAS  PubMed  Google Scholar 

  • Palumbi SR (2003) Population genetics, demographic connectivity, and the design of marine reserves. Ecol Appl 13:146–158

    Article  Google Scholar 

  • Paris CB, Pérez-Pérez M, Kool J, Aldana Aranda D (2006) Segregation of queen conch, Strombus gigas, populations from the Yucatan Peninsula, Mexico. In: Grober-Dunsmore R, Keller BD (eds) Caribbean connectivity: implications for marine protected area management. Proceedings of a special symposium 9–11 Nov 2006, 59th annual meeting of the Gulf and Caribbean Fisheries Institute, Belize City, Belize, vol 9, pp 71–88

  • Pascual M, Palero F, García-Merchán VH, Macpherson E, Robainas-Barcia A, Mestres F, Roda D, Abelló P (2016) Temporal and spatial genetic differentiation in the crab Liocarcinus depurator across the Atlantic-Mediterranean transition. Sci Rep 6:29892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GENALEX 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Enriquez R, Garcia-Rodriguez FJ, Mendoza-Carrion G, Padilla C (2011) Geographical variation in the genetic diversity and composition of the endangered queen conch Strombus gigas (Mesogastropoda: Strombidae) from Yucatán, México. Rev Biol Trop 59:1115–1126

    PubMed  Google Scholar 

  • Pérez-Pérez M (2004) Segregación de la población de Strombus gigas del Arrecife Alacranes con respeto a las poblaciones del Norte de Yucatán y del Caribe mexicano. Ph.D. thesis, Cinvestav IPN Mérida, Mexico, p 117

  • Pritchard JK, Stephens M, Donnelly PJ (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard JK, Wen X, Falush D (2010) Documentation for STRUCTURE software, version 2.3. University of Chicago, Chicago, IL

  • Quattrini AM, Baums IB, Shank TM, Morrison CL, Cordes EE (2015) Testing the depth-differentiation hypothesis in a deepwater octocoral. Proc R Soc Lond B Biol Sci 282:20150008

    Article  Google Scholar 

  • Rodríguez-Gil LA (2002) Genética poblacional del caracol rosado Strombus gigas: implicaciones para su conservación y pesquería. Informe final del proyecto L290, CONABIO, Mexico

  • Rodríguez-Rodríguez MA, Gasca-Pineda J, Medellín RA, Eguiarte LE (2015) Analysis of genetic diversity of bighorn sheep (Ovis canadensis) from Mexican populations. J Mammal 96:473–480

    Article  Google Scholar 

  • Simmons LW (2005) The evolution of polyandry: sperm competition, sperm selection, and offspring viability. Annu Rev Ecol Evol Syst 36:125–146

    Article  Google Scholar 

  • Sokolov EP (2000) An improved method for DNA isolation from mucopolysaccharide-rich molluscan tissues. J Molluscan Stud 66:573–575

    Article  Google Scholar 

  • Stoner AW (1989) Density-dependent growth and grazing effects of juvenile queen conch Strombus gigas L. in a tropical seagrass meadow. J Exp Mar Bio Ecol 130:119–133

    Article  Google Scholar 

  • Stoner AW, Lally J (1994) High-density aggregation in queen conch Strombus gigas: formation, patterns, and ecological significance. Mar Ecol Prog Ser 106:73

    Article  Google Scholar 

  • Stoner AW, Davis MH, Booker CJ (2012) Negative consequences of Allee effect are compounded by fishing pressure: comparison of queen conch reproduction in fishing grounds and a marine protected area. Bull Mar Sci 88:89–104

    Article  Google Scholar 

  • Theile S (2001) Queen conch fisheries and their management in the Caribbean. Technical report to the CITES. TRAFFIC Europe

  • Tregenza T, Wedell N (2002) Polyandrous females avoid costs of inbreeding. Nature 415:71–73

    Article  CAS  PubMed  Google Scholar 

  • Vähä JP, Erkinaro J, Niemelä E, Primmer CR (2007) Life-history and habitat features influence the within-river genetic structure of Atlantic salmon. Mol Ecol 16:2638–2654

    Article  PubMed  Google Scholar 

  • van der Meer MH, Hobbs JPA, Jones GP, Van Herwerden L (2012) Genetic connectivity among and self-replenishment within island populations of a restricted range subtropical reef fish. PLoS One 7:e49660

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Meer MH, Berumen ML, Hobbs JP, van Herwerden L (2015) Population connectivity and the effectiveness of marine protected areas to protect vulnerable, exploited and endemic coral reef fishes at an endemic hotspot. Coral Reefs 34:393–402

    Article  Google Scholar 

  • Wang HZ, Wu ZX, Lu JJ, Shi NN, Zhao Y, Zhang ZT, Liu JJ (2009) Molecular diversity and relationships among Cymbidium goeringii cultivars based on inter-simple sequence repeat (ISSR) markers. Genetica 136:391–399

    Article  CAS  PubMed  Google Scholar 

  • Ward R (2000) Genetics in fisheries management. Hydrobiologia 420:191–201

    Article  CAS  Google Scholar 

  • Wells SM, Pyle RM, Collins NM (1983) The IUCN invertebrate red data book. IUCN, Gland, Switzerland

  • Winnepenninckx B, Backeljau T, Dewachter R (1993) Extraction of high-molecular-weight DNA from molluscs. Trends Genet 9:407

    Article  CAS  PubMed  Google Scholar 

  • Wolfe AD, Xiang QY, Kephart SR (1998) Assessing hybridization in natural populations of Penstemon (Scrophulariaceae) using hypervariable intersimple sequence repeat (ISSR) bands. Mol Ecol 7:1107–1125

    Article  CAS  PubMed  Google Scholar 

  • Yasui Y (1998) The genetic benefits of female multiple mating reconsidered. Trends Ecol Evol 13:246–250

    Article  CAS  PubMed  Google Scholar 

  • Yeh FC, Yang R, Boyle TJB (1999) Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belgian Journal of Botany 129:157

    Google Scholar 

  • Zamora-Bustillos R, Rodríguez-Canul R, García de León FJ, Tello Cetina J (2011) Diversidad genética de dos poblaciones del caracol Strombus gigas (Gastropoda: Strombidae) en Yucatán, México, con microsatélite. Rev Biol Trop 59:1127–1134

    PubMed  Google Scholar 

  • Zhan A, Hu J, Hu X, Zhou Z, Hui M, Wang S, Peng W, Wang M, Bao Z (2009) Fine-scale population genetic structure of Zhikong scallop (Chlamys farreri): do local marine currents drive geographical differentiation? Mar Biotechnol 11:223–235

    Article  CAS  PubMed  Google Scholar 

  • Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Samples in Xcalak National Reef Park and Banco Chinchorro Biosphere Reserve were collected under permit PPF/DGOPA-064/13 (Comisión Nacional de Acuacultura y Pesca, Mexico), and in the Turneffe Atoll Marine Reserve under CITES Permit No. 3922 (Fisheries Department of Belize). Samples from Puerto Morelos Reef National Park and the Cozumel Island Protected Area of Fauna and Flora were obtained from seizures of illegal catch with permission from the relevant authority. Samples from the Alacranes National Reef Park were obtained under authorization from the director of the Park. We thank the directors of the protected natural areas where we sampled, as well as their staff who supported us in the field. We thank the Oceanic Society for their support for fieldwork at Turneffe Atoll in Belize. We are particularly grateful to Nataly Castelblanco Martínez for her help during our stay in Belize. Thanks to Nataly Gutiérrez Isaza, Guadalupe Guerrero Hernández and Artemio Poot Balam for their help in sample collection. We also thank the fishery authorities of Mexico and Belize for their care and kindness during the process of obtaining the relevant permits. The inputs for the study area map were provided by the Biodiversity and Environmental Resource Data System of Belize, Espacio Digital Geográfico (SEMARNAT), and the Cortal de Geoinformación (CONABIO). We would like to thank Arely Martínez Arce from ECOSUR for her technical help in the laboratory. Finally, we are particularly grateful to the anonymous referees for their time. Their valuable comments greatly improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Salima Machkour-M’Rabet or Jorge Cruz-Medina.

Additional information

Communicated by Biology Editor Dr. Line K. Bay

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 108 kb)

Supplementary material 2 (DOCX 82 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machkour-M’Rabet, S., Cruz-Medina, J., García-De León, F.J. et al. Connectivity and genetic structure of the queen conch on the Mesoamerican Reef. Coral Reefs 36, 535–548 (2017). https://doi.org/10.1007/s00338-017-1551-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-017-1551-3

Keywords

Navigation