Skip to main content

Advertisement

Log in

Differential modification of seawater carbonate chemistry by major coral reef benthic communities

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Ocean acidification (OA) resulting from uptake of anthropogenic CO2 may negatively affect coral reefs by causing decreased rates of biogenic calcification and increased rates of CaCO3 dissolution and bioerosion. However, in addition to the gradual decrease in seawater pH and Ω a resulting from anthropogenic activities, seawater carbonate chemistry in these coastal ecosystems is also strongly influenced by the benthic metabolism which can either exacerbate or alleviate OA through net community calcification (NCC = calcification – CaCO3 dissolution) and net community organic carbon production (NCP = primary production − respiration). Therefore, to project OA on coral reefs, it is necessary to understand how different benthic communities modify the reef seawater carbonate chemistry. In this study, we used flow-through mesocosms to investigate the modification of seawater carbonate chemistry by benthic metabolism of five distinct reef communities [carbonate sand, crustose coralline algae (CCA), corals, fleshy algae, and a mixed community] under ambient and acidified conditions during summer and winter. The results showed that different communities had distinct influences on carbonate chemistry related to the relative importance of NCC and NCP. Sand, CCA, and corals exerted relatively small influences on seawater pH and Ω a over diel cycles due to closely balanced NCC and NCP rates, whereas fleshy algae and mixed communities strongly elevated daytime pH and Ω a due to high NCP rates. Interestingly, the influence on seawater pH at night was relatively small and quite similar across communities. NCC and NCP rates were not significantly affected by short-term acidification, but larger diel variability in pH was observed due to decreased seawater buffering capacity. Except for corals, increased net dissolution was observed at night for all communities under OA, partially buffering against nighttime acidification. Thus, algal-dominated areas of coral reefs and increased net CaCO3 dissolution may partially counteract reductions in seawater pH associated with anthropogenic OA at the local scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Adey WH, Small AM (2000) Community and environmental influences on reef coral calcification. Limnol Oceanogr 45:1667–1671

    Article  Google Scholar 

  • Andersson AJ, Gledhill D (2013) Ocean acidification and coral reefs: Effects on breakdown, dissolution, and net ecosystem calcification. Ann Rev Mar Sci 5:321–348

    Article  PubMed  Google Scholar 

  • Andersson AJ, Yeakel KL, Bates NR, de Putron SJ (2014) Partial offsets in ocean acidification from changing coral reef biogeochemistry. Nat Clim Chang 4:56–61

    Article  CAS  Google Scholar 

  • Andersson AJ, Kuffner IB, Mackenzie FT, Jokiel PL, Rodgers KS, Tan A (2009) Net loss of CaCO3 from a subtropical calcifying community due to seawater acidification: mesocosm-scale experimental evidence. Biogeosciences 6:1811–1823

    Article  CAS  Google Scholar 

  • Anthony KRN, Kleypas JA, Gattuso J-P (2011) Coral reefs modify their seawater carbon chemistry – implications for impacts of ocean acidification. Glob Chang Biol 17:3655–3666

    Article  Google Scholar 

  • Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci USA 105:17442–17446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anthony KRN, Diaz-Pulido G, Verlinden N, Tilbrook B, Andersson AJ (2013) Benthic buffers and boosters of ocean acidification on coral reefs. Biogeosciences 10:4897–4909

    Article  Google Scholar 

  • Bahr KD, Jokiel PL, Toonen RJ (2015) The unnatural history of Kāne‘ohe Bay: coral reef resilience in the face of centuries of anthropogenic impacts. PeerJ 3:e950

    Article  PubMed  PubMed Central  Google Scholar 

  • Bates NR, Amat A, Andersson AJ (2010) Feedbacks and responses of coral calcification on the Bermuda reef system to seasonal changes in biological processes and ocean acidification. Biogeosciences 7:2509–2530

    Article  CAS  Google Scholar 

  • Bruno JF, Selig ER (2007) Regional decline of coral cover in the Indo-Pacific: timing, extent, and subregional comparisons. PLoS One 2:e711

    Article  PubMed  PubMed Central  Google Scholar 

  • Chalker BE, Barnes DJ, Dunlap WC, Jokiel PL (1988) Light and reef-building corals. Interdiscip Sci Rev 13:222–237

    Article  Google Scholar 

  • Comeau S, Edmunds PJ, Spindel NB, Carpenter RC (2013) The responses of eight coral reef calcifiers to increasing partial pressure of CO2 do not exhibit a tipping point. Limnol Oceanogr 58:388–398

    Article  CAS  Google Scholar 

  • Cornwall CE, Hepburn CD, McGraw CM, Currie KI, Pilditch CA, Hunter KA, Boyd PW, Hurd CL (2013) Diurnal fluctuations in seawater pH influence the response of a calcifing macroalga to ocean acidification. Proc R Soc Lond B Biol Sci 280:20122201

    Article  CAS  Google Scholar 

  • Costanza R, de Groot R, Sutton P, van der Ploeg S, Anderson SJ, Kubiszewski I, Farber S, Turner RK (2014) Changes in the global value of ecosystem services. Glob Environ Change 26:152–158

    Article  Google Scholar 

  • Cyronak T, Santos IR, Erler DV, Maher DT, Eyre BD (2014) Drivers of pCO2 variability in two contrasting coral reef lagoons: The influence of submarine groundwater discharge. Global Biogeochem Cycles 28:2013GB0024598

    Article  CAS  Google Scholar 

  • Deffeyes KS (1965) Carbonate equilibria: a graphic and algebraic approach. Limnol Oceanogr 10:412–426

    Article  Google Scholar 

  • Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res Part I Oceanogr Res Pap 34:1733–1743

    Article  CAS  Google Scholar 

  • Dickson AG, Sabine CL, Christian JR (2007) Guide to best practices for ocean CO2 measurements. PICES Special Publication 3, 191 pp

  • Dubinsky Z, Stambler N (2010) Coral reefs: An ecosystem in transition. Springer, Netherlands

    Google Scholar 

  • Enochs IC, Manzello DP, Donham EM, Kolodziej G, Okano R, Johnston L, Young C, Iguel J, Edwards CB, Fox MD, Valentino L, Johnson S, Benavente D, Clark SJ, Carlton R, Burton T, Eynaud Y, Price NN (2015) Shift from coral to macroalgae dominance on a volcanically acidified reef. Nat Clim Chang 5:1083–1088

    Article  CAS  Google Scholar 

  • Erez J, Reynaud S, Silverman J, Schneider K, Allemand D (2011) Coral calcification under ocean acidification and global change. In: Dubinsky Z, Stambler N (eds) Coral reefs: An ecosystem in transition. Springer, Netherlands, pp 151–176

    Chapter  Google Scholar 

  • Eyre BD, Andersson AJ, Cyronak T (2014) Benthic coral reef calcium carbonate dissolution in an acidifying ocean. Nat Clim Chang 4:969–976

    Article  CAS  Google Scholar 

  • Falter JL, Lowe RJ, Zhang Z, McCulloch M (2013) Physical and biological controls on the carbonate chemistry of coral reef waters: effects of metabolism, wave forcing, sea level, and geomorphology. PLoS One 8:e53303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner TA, Côté IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in Caribbean corals. Science 301:958–960

    Article  CAS  PubMed  Google Scholar 

  • Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293:2248–2251

    Article  CAS  PubMed  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP (1994) Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265:1547–1551

    Article  CAS  PubMed  Google Scholar 

  • Hunter CL, Evans CW (1995) Coral reefs in Kaneohe Bay, Hawaii: two centuries of western influence and two decades of data. Bull Mar Sci 57:501–515

    Google Scholar 

  • IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Core Writing Team, R.K. Pachauri and L.A. Meyer (eds) Geneva, Switzerland, 151 pp

  • Johnson MD, Carpenter RC (2012) Ocean acidification and warming decrease calcification in the crustose coralline alga Hydrolithon onkodes and increase susceptibility to grazing. J Exp Mar Bio Ecol 434–435:94–101

    Article  CAS  Google Scholar 

  • Johnson MD, Price NN, Smith JE (2014) Contrasting effects of ocean acidification on tropical fleshy and calcareous algae. PeerJ 2:e411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jokiel PL, Bahr KD, Rodgers KS (2014) Low-cost, high-flow mesocosm system for simulating ocean acidification with CO2 gas. Limnol Oceanogr Methods 12:313–322

    Article  CAS  Google Scholar 

  • Jokiel PL, Brown EK, Friedlander A, Rodgers KS (2004) Hawai’i coral reef assessment and monitoring program: Spatial patterns and temporal dynamics in reef coral communities. Pac Sci 58:159–174

    Article  Google Scholar 

  • Jokiel PL, Rodgers KS, Kuffner IB, Andersson AJ, Cox EF, Mackenzie FT (2008) Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs 27:473–483

    Article  Google Scholar 

  • Jury CP, Thomas FIM, Atkinson MJ, Toonen RJ (2013) Buffer capacity, ecosystem feedbacks, and seawater chemistry under global change. Water 5:1303–1325

    Article  CAS  Google Scholar 

  • Kleypas JA, Yates KK (2009) Coral reefs and ocean acidification. Oceanography 22:108–117

    Article  Google Scholar 

  • Kleypas JA, McManus JW, Meñez LAB (1999) Environmental limits to coral reef development: Where do we draw the line? Am Zool 39:146–159

    Article  Google Scholar 

  • Kleypas JA, Anthony KRN, Gattuso J-P (2011) Coral reefs modify their seawater carbon chemistry – case study from a barrier reef (Moorea, French Polynesia). Glob Chang Biol 17:3667–3678

    Article  Google Scholar 

  • Langdon C, Atkinson MJ (2005) Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal changes in temperature/irradiance and nutrient enrichment. J Geophys Res Oceans 110:C09S07

    Article  CAS  Google Scholar 

  • Langdon C, Gattuso J, Andersson A (2010) Measurements of calcification and dissolution of benthic organisms and communities. Guide to best practices for ocean acidification research and data reporting Luxembourg: Office for Official Publications of the European Union pp. 213-234

  • Lantz CA, Atkinson MJ, Winn CW, Kahng SE (2014) Dissolved inorganic carbon and total alkalinity of a Hawaiian fringing reef: chemical techniques for monitoring the effects of ocean acidification on coral reefs. Coral Reefs 33:105–115

    Article  Google Scholar 

  • Lewis E, Wallace D (1998) CO2SYS—program developed for the CO2 system calculations. Carbon Dioxide Inf. Anal. Center. Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN, USA

  • Martin S, Charnoz A, Gattuso J-P (2013) Photosynthesis, respiration and calcification in the Mediterranean crustose coralline alga Lithophyllum cabiochae (Corallinales, Rhodophyta). Eur J Phycol 48:163–172

    Article  CAS  Google Scholar 

  • McCook L, Jompa J, Diaz-Pulido G (2001) Competition between corals and algae on coral reefs: a review of evidence and mechanisms. Coral Reefs 19:400–417

    Article  Google Scholar 

  • McCook LJ, Folke C, Hughes TP, McCook LJ, Nyström M, Obura D, Salm R, Great barrier Reef Marine Park A (2007) Ecological resilience, climate change and the Great Barrier Reef. In: Johnson JE, Marshall PA (eds) Climate change and the Great Barrier Reef: a vulnerability assessment. The Great barrier Reef Marine Park Authority, Townsville, pp 79–96

    Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicx RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907

    Article  CAS  Google Scholar 

  • Murillo LJA, Jokiel PL, Atkinson MJ (2014) Alkalinity to calcium flux ratios for corals and coral reef communities: variances between isolated and community conditions. PeerJ 2:e249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandolfi JM, Jackson JBC, Baron N, Bradbury RH, Guzman HM, Hughes TP, Kappel CV, Micheli F, Ogden JC, Possingham HP, Sala E (2005) Are U.S. coral reefs on the slippery slope to slime? Science 307:1725–1726

    Article  CAS  PubMed  Google Scholar 

  • Reynaud S, Leclercq N, Romaine-Lioud S, Ferrier-Pagés C, Jaubert J, Gattuso J-P (2003) Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Glob Chang Biol 9:1660–1668

    Article  Google Scholar 

  • Schoepf V, Grottoli AG, Warner ME, Cai W-J, Melman TF, Hoadley KD, Pettay DT, Hu X, Li Q, Xu H, Wang Y, Matsui Y, Baumann JH (2013) Coral energy reserves and calcification in a high-CO2 world at two temperatures. PLoS One 8:e75049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semesi IS, Kangwe J, Björk M (2009) Alterations in seawater pH and CO2 affect calcification and photosynthesis in the tropical coralline algae Hydrolithon sp. (Rhodophyta). Estuar Coast Shelf Sci 84:337–341

    Article  CAS  Google Scholar 

  • Shamberger KEF, Feely RA, Sabine CL, Atkinson MJ, DeCarlo EH, Mackenzie FT, Drupp PS, Butterfield DA (2011) Calcification and organic production on a Hawaiian coral reef. Mar Chem 127:64–75

    Article  CAS  Google Scholar 

  • Shaw EC, McNeil BI, Tilbrook B (2012) Impacts of ocean acidification in naturally variable coral reef flat ecosystems. J Geophys Res Oceans 117:C03038

    Article  CAS  Google Scholar 

  • Silverman J, Lazar B, Cao L, Caldeira K, Erez J (2009) Coral reefs may start dissolving when atmospheric CO2 doubles. Geophys Res Lett 36:L05606

    Article  CAS  Google Scholar 

  • Silverman J, Schneider K, Kline DI, Rivlin T, Rivlin A, Hamylton S, Lazar B, Erez J, Caldeira K (2014) Community calcification in Lizard Island, Great Barrier Reef: a 33 year perspective. Geochim Cosmochim Acta 144:72–81

    Article  CAS  Google Scholar 

  • Suzuki A, Kawahata H (1999) Partial pressure of carbon dioxide in coral reef lagoon waters: comparative study of atolls and barrier reefs in the Indo-Pacific oceans. J Oceanogr 55:731–745

    Article  CAS  Google Scholar 

  • Suzuki A, Kawahata H (2003) Carbon budget of coral reef systems: an overview of observations in fringing reefs, barrier reefs and atolls in the Indo-Pacific regions. Tellus B 55:428–444

    Article  Google Scholar 

  • Suzuki A, Nakamori T, Kayanne H (1995) The mechanism of production enhancement in coral reef carbonate systems: model and empirical results. Sed Geol 99:259–280

    Article  CAS  Google Scholar 

  • Watanabe A, Kayanne H, Hata H, Kudo S, Nozaki K, Kato K, Negishi A, Ikeda Y, Yamano H (2006) Analysis of the seawater CO2 system in the barrier reef-lagoon system of Palau using total alkalinity-dissolved inorganic carbon diagrams. Limnol Oceanogr 51:1614–1628

    Article  CAS  Google Scholar 

  • Wilkinson C (2008) Status of coral reefs of the world: 2008. Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre, Townsville, Australia, 296 p

  • Wisshak M, Schönberg CHL, Form A, Freiwald A (2012) Ocean acidification accelerates reef bioerosion. PLoS One 7:e45124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood HL, Spicer JI, Widdicombe S (2010) Ocean acidification may increase calcification rates, but at a cost. Proc R Soc Lond B Biol Sci 275:1767–1773

    Article  Google Scholar 

  • Zeebe RE, Wolf-Gladrow DA (2001) CO2 in seawater: equilibrium, kinetics, isotopes. Elsevier Oceanography Series 65, Elsevier Science, Amsterdam

Download references

Acknowledgments

The authors are grateful for support from NSF GRFP (HP) and NSF OCE 12-55042 (AJA). We also appreciate the constructive comments by three anonymous reviewers which significantly improved an earlier draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather N. Page.

Additional information

Communicated by Biology Editor Mark R. Patterson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Page, H.N., Andersson, A.J., Jokiel, P.L. et al. Differential modification of seawater carbonate chemistry by major coral reef benthic communities. Coral Reefs 35, 1311–1325 (2016). https://doi.org/10.1007/s00338-016-1490-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-016-1490-4

Keywords

Navigation