Skip to main content

Advertisement

Log in

Incorporating benthic community changes into hydrochemical-based projections of coral reef calcium carbonate production under ocean acidification

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

The existence of coral reefs is dependent on the production and maintenance of calcium carbonate (CaCO3) framework that is produced through calcification. The net production of CaCO3 will likely decline in the future, from both declining net calcification rates (decreasing calcification and increasing dissolution) and shifts in benthic community composition from calcifying organisms to non-calcifying organisms. Here, we present a framework for hydrochemical studies that allows both declining net calcification rates and changes in benthic community composition to be incorporated into projections of coral reef CaCO3 production. The framework involves upscaling net calcification rates for each benthic community type using mapped proportional cover of the benthic communities. This upscaling process was applied to the reef flats at One Tree and Lady Elliot reefs (Great Barrier Reef) and Shiraho Reef (Okinawa), and compared to existing data. Future CaCO3 budgets were projected for Lady Elliot Reef, predicting a decline of 53 % from the present value by end-century (800 ppm CO2) without any changes to benthic community composition. A further 5.7 % decline in net CaCO3 production is expected for each 10 % decline in calcifier cover, and net dissolution is predicted by end-century if calcifier cover drops below 18 % of the present extent. These results show the combined negative effect of both declining net calcification rates and changing benthic community composition on reefs and the importance of considering both processes for determining future reef CaCO3 production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Andersson AJ, Gledhill D (2013) Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification. Annu Rev Mar Sci 5:321–348

    Article  Google Scholar 

  • Andersson AJ, Mackenzie FT, Ver LM (2003) Solution of shallow-water carbonates: an insignificant buffer against rising atmospheric CO2. Geology 31:513–516

    Article  CAS  Google Scholar 

  • Andersson A, Kline D, Edmunds P, Archer S, Bednaršek N, Carpenter R, Chadsey M, Goldstein P, Grottoli A, Hurst T (2015) Understanding ocean acidification impacts on organismal to ecological scales. Oceanography 25:16–27

    Article  Google Scholar 

  • Andréfouët S, Payri C (2001) Scaling-up carbon and carbonate metabolism of coral reefs using in situ data and remote sensing. Coral Reefs 19:259–269

    Google Scholar 

  • Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci 105:17442–17446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnes D (1983) Profiling coral reef productivity and calcification using pH and oxygen electrodes. J Exp Mar Bio Ecol 66:149–161

    Article  CAS  Google Scholar 

  • Brock JC, Yates KK, Halley RB, Kuffner IB, Wright CW, Hatcher BG (2006) Northern Florida reef tract benthic metabolism scaled by remote sensing. Mar Ecol Prog Ser 312:123–139

    Article  CAS  Google Scholar 

  • Chan N, Connolly SR (2013) Sensitivity of coral calcification to ocean acidification: a meta-analysis. Glob Chang Biol 19:282–290

    Article  PubMed  Google Scholar 

  • Chave KE, Smith SV, Roy KJ (1972) Carbonate production by coral reefs. Mar Geol 12:123–140

    Article  CAS  Google Scholar 

  • Chisholm JR (2000) Calcification by crustose coralline algae on the northern Great Barrier Reef, Australia. Limnol Oceanogr 45:1476–1484

    Article  CAS  Google Scholar 

  • Cyronak T, Santos IR, Eyre BD (2013) Permeable coral reef sediment dissolution driven by elevated pCO2 and pore water advection. Geophys Res Lett 40:4876–4881

    Article  CAS  Google Scholar 

  • Enochs IC, Manzello DP, Donham EM, Kolodziej G, Okano R, Johnston L, Young C, Iguel J, Edwards CB, Fox MD, Valentino L, Johnson S, Benavente D, Clark SJ, Carlton R, Burton T, Eynaud Y, Price NN (2015) Shift from coral to macroalgae dominance on a volcanically acidified reef. Nat Clim Chang 5:1083–1088

    Article  CAS  Google Scholar 

  • Eyre BD, Andersson AJ, Cyronak T (2014) Benthic coral reef calcium carbonate dissolution in an acidifying ocean. Nat Clim Chang 4:969–976

    Article  CAS  Google Scholar 

  • Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G, Okazaki R, Muehllehner N, Glas MS, Lough JM (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Chang 1:165–169

    Article  CAS  Google Scholar 

  • Friedman A, Pizarro O, Williams SB, Johnson-Roberson M (2012) Multi-scale measures of rugosity, slope and aspect from benthic stereo image reconstructions. PloS One 7:e50440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goatley CHR, Bellwood DR (2011) The roles of dimensionality, canopies and complexity in ecosystem monitoring. PLoS One 6:e27307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodman JA, Purkis SJ, Phinn SR (2013) Coral reef remote sensing: a guide for mapping, monitoring and management. Springer, Dordrecht, pp 3–28

    Book  Google Scholar 

  • Hamylton S (2014) Will coral islands maintain their growth over the next century? A deterministic model of sediment availability at Lady Elliot Island. Great Barrier Reef. PloS One 9:e94067

    Article  PubMed  Google Scholar 

  • Hamylton S, Silverman J, Shaw E (2013) The use of remote sensing to scale up measures of carbonate production on reef systems: a comparison of hydrochemical and census-based estimation methods. Int J f Remote Sens 34:6451–6465

    Article  Google Scholar 

  • Harney JN, Fletcher CH (2003) A budget of carbonate framework and sediment production, Kailua Bay, Oahu. Hawaii. J Sediment Res 73:856–868

    Article  Google Scholar 

  • Hatcher B (1997) Coral reef ecosystems: how much greater is the whole than the sum of the parts? Coral Reefs 16:S77–S91

    Article  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nystrom M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933

    Article  CAS  PubMed  Google Scholar 

  • Inoue S, Kayanne H, Yamamoto S, Kurihara H (2013) Spatial community shift from hard to soft corals in acidified water. Nat Clim Chang 3:683–687

    Article  CAS  Google Scholar 

  • Jones NS, Ridgwell A, Hendy EJ (2015) Evaluation of coral reef carbonate production models at a global scale. Biogeosciences 12:1339–1356

    Article  CAS  Google Scholar 

  • Kayanne H, Suzuki A, Saito H (1995) Diurnal changes in the partial-pressure of carbon-dioxide in coral-reef water. Science 269:214–216

    Article  CAS  PubMed  Google Scholar 

  • Kayanne H, Hata H, Kudo S, Yamano H, Watanabe A, Ikeda Y, Nozaki K, Kato K, Negishi A, Saito H (2005) Seasonal and bleaching-induced changes in coral reef metabolism and CO2 flux. Global Biogeochem Cycles 19:GB3015

    Google Scholar 

  • Kinsey DW (1985) Calcification and carbon production I: system level studies. Proc 5th Int Coral Reef Symp 4:505–526

  • Kleypas JA, Yates KK (2009) Coral reefs and ocean acidification. Oceanography 22:108–117

    Article  Google Scholar 

  • Langdon C, Gattuso JP, Andersson A (2010) Measurements of calcification and dissolution of benthic organisms and communities. In: Riebessel U, Fabry VJ, Hansson L, Gattuso JP (eds) Guide to best practices for ocean acidification research and data reporting. European Union, Luxembourg, pp 213–232

    Google Scholar 

  • Lough J (2008) Coral calcification from skeletal records revisited. Mar Ecol Prog Ser 373:257–264

    Article  Google Scholar 

  • Manzello DP, Kleypas JA, Budd DA, Eakin CM, Glynn PW, Langdon C (2008) Poorly cemented coral reefs of the eastern tropical Pacific: possible insights into reef development in a high-CO2 world. Proc Natl Acad Sci U S A 105:10450–10455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milliman JD (1993) Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state. Global Biogeochem Cycles 7:927–957

    Article  CAS  Google Scholar 

  • Moberg F, Folke C (1999) Ecological goods and services of coral reef ecosystems. Ecol Econ 29:215–233

    Article  Google Scholar 

  • Nakamura T, Nakamori T (2009) Estimation of photosynthesis and calcification rates at a fringing reef by accounting for diurnal variations and the zonation of coral reef communities on reef flat and slope: a case study for the Shiraho reef, Ishigaki Island, southwest Japan. Coral Reefs 28:229–250

    Article  Google Scholar 

  • Ohde S, van Woesik R (1999) Carbon dioxide flux and metabolic processes of a coral reef, Okinawa. Bull Mar Sci 65:559–576

    Google Scholar 

  • Perry C, Edinger E, Kench P, Murphy G, Smithers S, Steneck R, Mumby P (2012) Estimating rates of biologically driven coral reef framework production and erosion: a new census-based carbonate budget methodology and applications to the reefs of Bonaire. Coral Reefs 31:853–868

    Article  Google Scholar 

  • Perry CT, Murphy GN, Kench PS, Smithers SG, Edinger EN, Steneck RS, Mumby PJ (2013) Caribbean-wide decline in carbonate production threatens coral reef growth. Nat Commun 4:1402

    Article  PubMed  PubMed Central  Google Scholar 

  • Rees S, Opdyke B, Wilson P, Henstock T (2007) Significance of Halimeda bioherms to the global carbonate budget based on a geological sediment budget for the Northern Great Barrier Reef, Australia. Coral Reefs 26:177–188

    Article  Google Scholar 

  • Riebesell U, Gattuso J-P (2015) Lessons learned from ocean acidification research. Nat Clim Chang 5:12–14

    Article  CAS  Google Scholar 

  • Shaw EC, McNeil BI (2014) Seasonal variability in carbonate chemistry and air–sea CO2 fluxes in the southern Great Barrier Reef. Mar Chem 158:49–58

    Article  CAS  Google Scholar 

  • Shaw EC, McNeil BI, Tilbrook B (2012) Impacts of ocean acidification in naturally variable coral reef flat ecosystems. J Geophys Res Oceans 117:C03038

    Google Scholar 

  • Shaw EC, Phinn SR, Tilbrook B, Steven A (2014) Comparability of slack water and Lagrangian flow respirometry methods for community metabolic measurements. PloS One 9:e112161

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaw EC, Phinn SR, Tilbrook B, Steven A (2015) Natural in situ relationships suggest coral reef calcium carbonate production will decline with ocean acidification. Limnol Oceanogr 60:777–788

    Article  CAS  Google Scholar 

  • Silverman J, Lazar B, Erez J (2007) Effect of aragonite saturation, temperature, and nutrients on the community calcification rate of a coral reef. J Geophys Res Oceans 112:C05004

    Google Scholar 

  • Silverman J, Kline D, Johnson L, Rivlin T, Schneider K, Erez J, Lazar B, Caldeira K (2012) Carbon turnover rates in the One Tree Island reef: a 40-year perspective. J Geophys Res Biogeosci 117:G03023

    Google Scholar 

  • Sinutok S, Hill R, Doblin M, Kühl M, Ralph P (2012) Microenvironmental changes support evidence of photosynthesis and calcification inhibition in Halimeda under ocean acidification and warming. Coral Reefs 31:1201–1213

    Article  Google Scholar 

  • Smith S (1978) Alkalinity depletion to estimate the calcification of coral reefs in flowing waters. In: Stoddart DR, Johannes R (eds) Coral reefs: research methods. UNESCO, Paris, pp 397–404

    Google Scholar 

  • Smith SV, Harrison JT (1977) Calcium carbonate production of the Mare Incognitum, the upper windward reef slope, at Enewetak Atoll. Science 197:556–559

    Article  CAS  PubMed  Google Scholar 

  • Stumpf RP, Holderied K, Sinclair M (2003) Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnol Oceanogr 48:547–556

    Article  Google Scholar 

  • Suzuki A, Nakamori T, Kayanne H (1995) The mechanism of production enhancement in coral-reef carbonate systems - model and empirical results. Sediment Geol 99:259–280

    Article  CAS  Google Scholar 

  • Vecsei A (2004) A new estimate of global reefal carbonate production including the fore-reefs. Glob Planet Change 43:1–18

    Article  Google Scholar 

  • Venti A, Kadko D, Andersson A, Langdon C, Bates N (2012) A multi-tracer model approach to estimate reef water residence times. Limnol Oceanogr Methods 10:1078–1095

    Article  Google Scholar 

  • Wilkinson C (2008) Status of coral reefs of the world: 2008. Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre, Townsville, Australia 296 pp

    Google Scholar 

  • Yates KK, Halley RB (2006) CO3 2− concentration and pCO(2) thresholds for calcification and dissolution on the Molokai reef flat, Hawaii. Biogeosci Discuss 3:357–369

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the two anonymous reviewers whose comments greatly improved our manuscript. ECS was funded through a Grant from the CSIRO Wealth from Oceans flagship awarded to Dr Bronte Tilbrook and Dr Andy Steven. SMH gratefully acknowledges funding from a University of Wollongong Return to Work Grant (Faculty of Science).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily C. Shaw.

Additional information

Communicated by Geology Editor Chris Perry

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaw, E.C., Hamylton, S.M. & Phinn, S.R. Incorporating benthic community changes into hydrochemical-based projections of coral reef calcium carbonate production under ocean acidification. Coral Reefs 35, 739–750 (2016). https://doi.org/10.1007/s00338-016-1407-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-016-1407-2

Keywords

Navigation