Skip to main content

Advertisement

Log in

Are all eggs created equal? A case study from the Hawaiian reef-building coral Montipora capitata

Coral Reefs Aims and scope Submit manuscript

Abstract

Parental effects have been largely unexplored in marine organisms and may play a significant role in dictating the phenotypic range of traits in coral offspring, influencing their ability to survive environmental challenges. This study explored parental effects and life-stage differences in the Hawaiian reef-building coral Montipora capitata from different environments by examining the biochemical composition of mature coral colonies and their eggs. Our results indicate that there are large biochemical differences between adults and eggs, with the latter containing higher concentration of lipids (mostly wax esters), ubiquitinated proteins (which may indicate high turnover rate of proteins) and antioxidants (e.g., manganese superoxide dismutase). Adults displayed high phenotypic plasticity, with corals from a high-light environment having more wax esters, lighter tissue δ13C signatures and higher Symbiodinium densities than adults from the low-light environment who had higher content of accessory pigments. A green-algal pigment (α-carotene) and powerful antioxidant was present in eggs; it is unclear whether this pigment is acquired from heterotrophic food sources or from endolithic green algae living in the adult coral skeletons. Despite the broad phenotypic plasticity displayed by adults, parental investment in the context of provisioning of energy reserves and antioxidant defense was the same in eggs from the different sites. Such equality in investment maximizes the capacity of all embryos and larvae to cope with challenging conditions associated with floating at the surface and to disperse successfully until an appropriate habitat for settlement is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Abramoff MD, Magalhaes PJ, Ram SJ (2004) Image Processing with Image. J. Biophotonics International 11:36–42

    Google Scholar 

  • Abrego D, Ulstrup KE, Willis BL, van Oppen MJH (2008) Species-specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress. Proc R Soc B-Biol Sci 275:2273–2282

    Article  CAS  Google Scholar 

  • Alamaru A, Yam R, Shemesh A, Loya Y (2009a) Trophic biology of Stylophora pistillata larvae: evidence from stable isotope analysis. Mar Ecol Prog Ser 383:85–94

    Article  Google Scholar 

  • Alamaru A, Loya Y, Brokovich E, Yam R, Shemesh A (2009b) Carbon and nitrogen utilization in two species of Red Sea corals along a depth gradient: Insights from stable isotope analysis of total organic material and lipids. Geochim Cosmochim Acta 73:5333–5342

    Article  CAS  Google Scholar 

  • Arai T, Kato M, Heyward A, Ikeda Y, Iizuka T, Maruyama T (1993) Lipid-composition of positively buoyant eggs of reef building corals. Coral Reefs 12:71–75

    Article  Google Scholar 

  • Badyaev AV, Uller T (2009) Parental effects in ecology and evolution: mechanisms, processes and implications. Proc R Soc B-Biol Sci 364:1169–1177

    Google Scholar 

  • Barshis DJ, Stillman JH, Gates RD, Toonen RJ, Smith LW, Birkeland C (2010) Protein expression and genetic structure of the coral Porites lobata in an environmentally extreme Samoan back reef: does host genotype limit phenotypic plasticity? Mol Ecol 19:1705–1720

    Article  PubMed  CAS  Google Scholar 

  • Bidigare RR, Van Heukelem L, Trees CC (2005) Analysis of algal pigments by high-performance liquid chromatography. In: Andersen R (ed) Algal culturing techniques. Academic Press, London, pp 327–345

  • Bodin N, Le Loc’h F, Hily C (2007) Effect of lipid removal on carbon and nitrogen stable isotope ratios in crustacean tissues. J Exp Mar Biol Ecol 341:168–175

    Article  CAS  Google Scholar 

  • Cantin NE, van Oppen MJH, Willis BL, Mieog JC, Negri AP (2009) Juvenile corals can acquire more carbon from high-performance algal symbionts. Coral Reefs 28:405–414

    Article  Google Scholar 

  • DeNiro MJ, Epstein S (1977) Mechanisms of carbon isotope fractionation associated with lipid synthesis. Science 197:261–263

    Article  PubMed  CAS  Google Scholar 

  • Donelson JM, Munday PL, McCormick MI (2009) Parental effects on offspring life histories: when are they important? Biol Lett 5:262–265

    Article  PubMed  Google Scholar 

  • Epel D, Hemela K, Shick M, Patton C (1999) Development in the floating world: Defenses of eggs and embryos against damage from UV radiation. Am Zool 39:271–278

    Google Scholar 

  • Figueiredo J, Baird AH, Cohen MF, Flot JF, Kamiki T, Meziane T, Tsuchiya M, Yamasaki H (2012) Ontogenetic change in the lipid and fatty acid composition of scleractinian coral larvae. Coral Reefs 31:613–619

    Article  Google Scholar 

  • Fine M, Loya Y (2002) Endolithic algae: an alternative source of photoassimilates during coral bleaching. Proc R Soc B-Biol Sci 269:1205–1210

    Article  Google Scholar 

  • Fine M, Meroz-Fine E, Hoegh-Guldberg O (2005) Tolerance of endolithic algae to elevated temperature and light in the coral Montipora monasteriata from the southern Great Barrier Reef. J Exp Biol 208:75–81

    Article  PubMed  Google Scholar 

  • Gaither MR, Rowan R (2010) Zooxanthellar symbiosis in planula larvae of the coral Pocillopora damicornis. J Exp Mar Biol Ecol 386:45–53

    Article  PubMed  Google Scholar 

  • Ginzburg LR (1998) Inertial growth: population dynamics based on maternal effects. In: Mousseau TA, Fox CW (eds) Maternal effects as adaptations. Oxford University Press, Oxford, U.K., pp 42–53

    Google Scholar 

  • Govindjee Wong D, Prezelin BB, Sweeney BM (1979) Chlorophyll a fluorescence of Gonyaulax polyedra grown on a light-dark cycle and after transfer to constant light. Photochem Photobiol 30:405–411

    Article  PubMed  CAS  Google Scholar 

  • Grasshoff K, Ehrhardt M, Kremling K (eds) (1983) Methods of seawater analysis. Verlag-Chemie, Weinheim

    Google Scholar 

  • Grottoli AG, Wellington GM (1999) Effect of light and zooplankton on skeletal delta C-13 values in the eastern Pacific corals Pavona clavus and Pavona gigantea. Coral Reefs 18:29–41

    Article  Google Scholar 

  • Grottoli AG, Rodrigues LJ, Juarez C (2004) Lipids and stable carbon isotopes in two species of Hawaiian corals, Porites compressa and Montipora verrucosa, following a bleaching event. Mar Biol 145:621–631

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge J (1999) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  • Hamdoun A, Epel D (2007) Embryo stability and vulnerability in an always changing world. Proc Natl Acad Sci USA 104:1745–1750

    Article  PubMed  CAS  Google Scholar 

  • Harii S, Nadaoka K, Yamamoto M, Iwao K (2007) Temporal changes in settlement, lipid content and lipid composition of larvae of the spawning hermatypic coral Acropora tenuis. Mar Ecol Prog Ser 346:89–96

    Article  CAS  Google Scholar 

  • Harii S, Yamamoto M, Hoegh-Guldberg O (2010) The relative contribution of dinoflagellate photosynthesis and stored lipids to the survivorship of symbiotic larvae of the reef-building corals. Mar Biol 157:1215–1224

    Article  CAS  Google Scholar 

  • Hirose M, Kinzie RA, Hidaka M (2001) Timing and process of entry of zooxanthellae into oocytes of hermatypic corals. Coral Reefs 20:273–280

    Article  Google Scholar 

  • Hodgson G (1985) Abundance and distribution of planktonic coral larvae in Kaneohe bay, Oahu. Hawaii. Mar Ecol Prog Ser 26:61–71

    Article  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  PubMed  CAS  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nystrom M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933

    Article  PubMed  CAS  Google Scholar 

  • Hughes AD, Grottoli AG, Pease TK, Matsui Y (2010) Acquisition and assimilation of carbon in non-bleached and bleached corals. Mar Ecol-Prog Ser 420:91–101

    Article  CAS  Google Scholar 

  • Jacobs MW, Podolsky RD (2010) Variety is the spice of life histories: Comparison of intraspecific variability in marine invertebrates. Integr Comp Biol 50:630–642

    Article  PubMed  Google Scholar 

  • Jeffrey SW (1968) Pigment composition of Siphonales algae in the brain coral Favia. Biol Bull 135:141–148

    Article  CAS  Google Scholar 

  • Jeffrey SW (1976) The occurrence of chlorophyll c1 and c2 in algae. J Phycol 12:349–354

    CAS  Google Scholar 

  • Jokiel PH, Lesser MP, Ondrusek ME (1997) UV-absorbing compounds in the coral Pocillopora damicornis: Interactive effects of UV radiation, photosynthetically active radiation, and water flow. Limnol Oceanogr 42:1468–1473

    Article  CAS  Google Scholar 

  • Kolinski SP (2004) Sexual reproduction and the early life history of Montipora capitata in Kane’ohe Bay, O’ahu, Hawai’i. Ph.D. thesis, University of Hawaii at Manoa, p 152

  • Lee RF, Hagen W, Kattner G (2006) Lipid storage in marine zooplankton. Mar Ecol Prog Ser 307:273–306

    Article  CAS  Google Scholar 

  • Lesser MP (2006) Oxidative stress in marine environments: Biochemistry and physiological ecology. Annu Rev Physiol 68:253–278

    Article  PubMed  CAS  Google Scholar 

  • Lesser MP, Stochaj WR, Tapley DW, Shick JM (1990) Bleaching in coral-reef anthozoans - Effects of irradiance, ultraviolet-radiation, and temperature on the activities of protective enzymes against active oxygen. Coral Reefs 8:225–232

    Article  Google Scholar 

  • Little AF, van Oppen MJH, Willis BL (2004) Flexibility in algal endosymbioses shapes growth in reef corals. Science 304:1492–1494

    Article  PubMed  CAS  Google Scholar 

  • Lough JM (2008) 10th anniversary review: a changing climate for coral reefs. J Environ Monit 10:21–29

    Article  PubMed  CAS  Google Scholar 

  • Magnusson SH, Fine M, Kuhl M (2007) Light microclimate of endolithic phototrophs in the scleractinian corals Montipora monasteriata and Porites cylindrica. Mar Ecol Prog Ser 332:119–128

    Article  Google Scholar 

  • Maragos JE (1972) A study of the ecology of Hawaiian reef corals. Dissertation, University of Hawaii, Ph.D

    Google Scholar 

  • Markey KL, Baird AH, Humphrey C, Negri AP (2007) Insecticides and a fungicide affect multiple coral life stages. Mar Ecol Prog Ser 330:127–137

    Article  CAS  Google Scholar 

  • Marquis CP, Baird AH, de Nys R, Holmstrom C, Koziumi N (2005) An evaluation of the antimicrobial properties of the eggs of 11 species of scleractinian corals. Coral Reefs 24:248–253

    Article  Google Scholar 

  • Marshall DJ, Allen RM, Crean AJ (2008) The ecological and evolutionary importance of maternal effects in the sea. Oceanogr Mar Biol Annu Rev 46:203–250

    Article  Google Scholar 

  • Michalek-Wagner K, Willis BL (2001) Impacts of bleaching on the soft coral Lobophytum compactum. II. Biochemical changes in adults and their eggs. Coral Reefs 19:240–246

    Article  Google Scholar 

  • Monaghan EJ, Ruttenberg KC (1999) Dissolved organic phosphorus in the coastal ocean: Reassessment of available methods and seasonal phosphorus profiles from the Eel River Shelf. Limnol Oceanogr 44:1702–1714

    Article  CAS  Google Scholar 

  • Moran AL, McAlister JS (2009) Egg size as a life history character of marine invertebrates: Is it all it’s cracked up to be? Biol Bull 216:226–242

    PubMed  Google Scholar 

  • Mousseau TA, Fox CW (1998) Maternal effects as adaptations. Oxford University Press, New York

    Google Scholar 

  • Nesa B, Baird AH, Harii S, Yakovleva I, Hidaka M (2012) Algal symbionts increase DNA damage in coral planulae exposed to sunlight. Zool Stud 51:12–17

    CAS  Google Scholar 

  • Niyogi KK, Bjorkman O, Grossman AR (1997) The roles of specific xanthophylls in photoprotection. Proc Natl Acad Sci USA 94:14162–14167

    Article  PubMed  CAS  Google Scholar 

  • Padilla-Gamiño JL, Gates RD (2012) Spawning dynamics in the Hawaiian reef building coral Montipora capitata. Mar Ecol Prog Ser 449:145–160

    Article  Google Scholar 

  • Padilla-Gamiño JL, Pochon X, Bird C, Concepcion GT, Gates RD (2012) From parent to gamete: Vertical transmission of Symbiodinium (Dinophyceae) ITS2 Sequence Assemblages in the reef building coral Montipora capitata. PLoS ONE 7(6):e38440. doi:10.1371/journal.pone.0038440

    Article  PubMed  Google Scholar 

  • Palardy JE, Rodrigues LJ, Grottoli AG (2008) The importance of zooplankton to the daily metabolic carbon requirements of healthy and bleached corals at two depths. J Exp Mar Biol Ecol 367:180–188

    Article  CAS  Google Scholar 

  • Palmer CV, Modi CK, Mydlarz LD (2009) Coral fluorescent proteins as antioxidants. PLoS ONE 4(10):e7298. doi:10.1371/journal.pone.0007298

    Article  PubMed  Google Scholar 

  • Papina M, Meziane T, van Woesik R (2003) Symbiotic zooxanthellae provide the host-coral Montipora digitata with polyunsaturated fatty acids. Comp Biochem Phys B 135:533–537

    Article  CAS  Google Scholar 

  • Pickart CM, Summers RG, Shim H, Kasperek EM (1991) Dynamics of ubiquitin pools in developing sea-urchin embryos Dev Grow Differ 33:587–598

    Article  CAS  Google Scholar 

  • Rinkevich B (1989) The contribution of photosynthetic products to coral reproduction. Mar Biol 101:259–263

    Article  CAS  Google Scholar 

  • Rodrigues LJ, Grottoli AG (2006) Calcification rate and the stable carbon, oxygen, and nitrogen isotopes in the skeleton, host tissue, and zooxanthellae of bleached and recovering Hawaiian corals. Geochim Cosmochim Acta 70:2781–2789

    Article  CAS  Google Scholar 

  • Rodrigues LJ, Grottoli AG (2007) Energy reserves and metabolism as indicators of coral recovery from bleaching. Limnol Oceanogr 52:1874–1882

    Article  Google Scholar 

  • Rodrigues LJ, Grottoli AG, Lesser MP (2008) Long-term changes in the chlorophyll fluorescence of bleached and recovering corals from Hawaii. J Exp Biol 211:2502–2509

    Article  PubMed  Google Scholar 

  • Rowan R (2004) Coral bleaching—Thermal adaptation in reef coral symbionts. Nature 430:742–742

    Article  PubMed  CAS  Google Scholar 

  • Schlichter D, Zscharnack B, Krisch H (1995) Transfer of photoassimilates from endolithic algae to coral tissue. Naturwissenschaften 82:561–564

    Article  CAS  Google Scholar 

  • Silversand C, Haux C (1997) Improved high-performance liquid chromatographic method for the separation and quantification of lipid classes: application to fish lipids. J Chromatogr B 703:7–14

    Article  CAS  Google Scholar 

  • Stat M, Morris E, Gates RD (2008) Functional diversity in coral-dinoflagellate symbiosis. Proc Natl Acad Sci USA 105:9256–9261

    Article  PubMed  CAS  Google Scholar 

  • Sultan SE (1996) Phenotypic plasticity for offspring traits in Polygonum persicaria. Ecology 77:1791–1807

    Article  Google Scholar 

  • Veron JEN (2000) Corals of the world. Sea Challengers, Townsville, Australia

    Google Scholar 

  • Wade MJ (1998) The evolutionary genetics of maternal effects. In: Mousseau TA, Fox CW (eds) Maternal effects as adaptations. Oxford University Press, Oxford, UK, pp 5–21

    Google Scholar 

  • Wallace CC (1985) Reproduction, recruitment and fragmentation in nine sympatric species of the coral genus Acropora. Mar Biol 88:217–233

    Article  Google Scholar 

  • Wellington GM, Fitt WK (2003) Influence of UV radiation on the survival of larvae from broadcast-spawning reef corals. Mar Biol 143:1185–1192

    Article  CAS  Google Scholar 

  • Wulff RD (1986) Seed size variation in Desmodium paniculatum. 2. Effects on seedling growth and physiological performance. J Ecol 74:99–114

    Article  Google Scholar 

  • Yakovleva IM, Baird AH, Yamamoto HH, Bhagooli R, Nonaka M, Hidaka M (2009) Algal symbionts increase oxidative damage and death in coral larvae at high temperatures. Mar Ecol Prog Ser 378:105–112

    Article  CAS  Google Scholar 

  • Zhukova NV, Titlyanov EA (2003) Fatty acid variations in symbiotic dinoflagellates from Okinawan corals. Phytochem 62:191–195

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Special thanks to M. Sales, J. Cozo, R. Gabriel, G. Carter, M. Hagedorn, P. Duarte-Quiroga, K. Stender and the wonderful volunteers who helped to collect samples during the spawning events. Thanks to R. Briggs, S. Christensen and Y. Matsui for their invaluable technical support and to K. Ruttenberg for laboratory space. Thanks to M. Gorbunov, R. Kinzie and anonymous reviewers for their helpful comments. JLPG was supported by the Mexican National Council for Science and Technology (CONACyT), the World Bank Coral Reef Targeted Research program and the Center for Microbial Oceanography: Research and Education (C-MORE). The research was funded by the National Science Foundation (OCE-0752604 to RDG and OIA-0554657 administered by the University of Hawai’i, OCE-0542415 to AGG) and the Pauley Foundation. This is HIMB contribution number 1519, SOEST contribution number 8753 and 2007 Pauley Summer Program Contribution number 8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline L. Padilla-Gamiño.

Additional information

Communicated by Biology Editor Dr. Mark Vermeij

Ada Alamaru, Laetitia Hédouin, Xavier Hernández-Pech, Frederique Kandel, Sherril Leon Soon and Melissa S. Roth contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

338_2012_957_MOESM2_ESM.eps

Appendix I. Linear regression representing the relationship between the number of egg–sperm bundles and their respective ash-free dry weight (mg) in Montipora capitata (EPS 449 kb)

Appendix II. (a) δ15N and (b) N:P ratios in adults and eggs of Montipora caitata. Mean ± SE (EPS 248 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padilla-Gamiño, J.L., Bidigare, R.R., Barshis, D.J. et al. Are all eggs created equal? A case study from the Hawaiian reef-building coral Montipora capitata . Coral Reefs 32, 137–152 (2013). https://doi.org/10.1007/s00338-012-0957-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-012-0957-1

Keywords

Navigation