Skip to main content
Log in

Genetic structure of the Caribbean giant barrel sponge Xestospongia muta using the I3-M11 partition of COI

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

In recent years, reports of sponge bleaching, disease, and subsequent mortality have increased alarmingly. Population recovery may depend strongly on colonization capabilities of the affected species. The giant barrel sponge Xestospongia muta is a dominant reef constituent in the Caribbean. However, little is known about its population structure and gene flow. The 5′-end fragment of the mitochondrial gene cytochrome oxidase subunit I is often used to address these kinds of questions, but it presents very low intraspecific nucleotide variability in sponges. In this study, the usefulness of the I3-M11 partition of COI to determine the genetic structure of X. muta was tested for seven populations from Florida, the Bahamas and Belize. A total of 116 sequences of 544 bp were obtained for the I3-M11 partition corresponding to four haplotypes. In order to make a comparison with the 5′-end partition, 10 sequences per haplotype were analyzed for this fragment. The 40 resulting sequences were of 569 bp and corresponded to two haplotypes. The nucleotide diversity of the I3-M11 partition (π = 0.00386) was higher than that of the 5′-end partition (π = 0.00058), indicating better resolution at the intraspecific level. Sponges with the most divergent external morphologies (smooth vs. digitate surface) had different haplotypes, while those with the most common external morphology (rough surface) presented a mixture of haplotypes. Pairwise tests for genetic differentiation among geographic locations based on F ST values showed significant genetic divergence between most populations, but this genetic differentiation was not due to isolation by distance. While limited larval dispersal may have led to differentiation among some of the populations, the patterns of genetic structure appear to be most strongly related to patterns of ocean currents. Therefore, hydrological features may play a major role in sponge colonization and need to be considered in future plans for management and conservation of these important components of coral reef ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Avise JC, Arnold J, RM Ball Jr, Bermingham E, Lamb T, Neigel T (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between populations genetics and systematics. Annu Rev Ecol Syst 18:489–522

    Google Scholar 

  • Bentlage B, Wörheide G (2007) Low genetic structuring among Pericharax heteroraphis (Porifera: Calcarea) populations from the Great Barrier Reef (Australia), revealed by analysis of nrDNA and nuclear intron sequences. Coral Reefs 26:807–816

    Article  Google Scholar 

  • Blanquer A, Uriz MJ (2007) Cryptic speciation in marine sponges evidenced by mitochondrial and nuclear genes: a phylogenetic approach. Mol Phylogenet Evol 45:392–397

    Article  PubMed  CAS  Google Scholar 

  • Blanquer A, Uriz MJ, Pascual M (2005) Polymorphic microsatellite loci isolated from the marine sponge Scopalina lophyropoda (Demospongiae: Halichondrida). Mol Ecol Notes 5:466–468

    Article  CAS  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660

    Article  PubMed  CAS  Google Scholar 

  • Colin PL (2003) Larvae retention: genes or oceanography? Science 300:1657–1659

    Article  PubMed  CAS  Google Scholar 

  • Cowart JD, Henkel TP, McMurray SE, Pawlik JR (2006) Sponge orange band (SOB): a pathogenic-like condition of the giant barrel sponge, Xestospongia muta. Coral Reefs 25:513

    Article  Google Scholar 

  • Diaz MC, Rützler K (2001) Sponges: an essential component of Caribbean coral reefs. Bull Mar Sci 69:535–546

    Google Scholar 

  • Duran S, Rützler K (2006) Ecological speciation in a Caribbean marine sponge. Mol Phylogent Evol 40:292–297

    Article  CAS  Google Scholar 

  • Duran S, Pascual M, Estoup A, Turon X (2002) Polymorphic microsatellite loci in the sponge Crambe crambe (Porifera: Poecilosclerida) and their variation in two distant populations. Mol Ecol Notes 2:478–480

    Article  CAS  Google Scholar 

  • Duran S, Giribet G, Turon X (2004a) Phylogeographical history of the sponge Crambe crambe (Porifera, Poecilosclerida): range expansion and recent invasion of the Macaronesian islands from the Mediterranean Sea. Mol Ecol 13:109–122

    Article  PubMed  CAS  Google Scholar 

  • Duran S, Pascual M, Turon X (2004b) Low levels of genetic variation in mtDNA sequences over the western Mediterranean and Atlantic range of the sponge Crambe crambe (Poecilosclerida). Mar Biol 144:31–35

    Article  CAS  Google Scholar 

  • Erpenbeck D, Breeuwer JAJ, van der Velde HC, van Soest RWM (2002) Unravelling host and symbiont phylogenies of halichondrid sponges (Demospongiae, Porifera) using a mitochondrial marker. Mar Biol 141:377–386

    Article  Google Scholar 

  • Erpenbeck J, Hooper JNA, Wörheide G (2006) CO1 phylogenies in diploblasts and the “Barcoding of Life” - are we sequencing a suboptimal partition? Mol Ecol Notes 6:550–553

    Article  CAS  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Folmer O, Hoeh W, Black M, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–299

    CAS  Google Scholar 

  • Fromont J, Kerr S, Kerr R, Riddle M, Murphy P (1994) Chemotaxonomic relationships within, and comparisons between, the orders Haplosclerida and Petrosida (Porifera: Demospongiae) using sterol compliments. Biochem Syst Ecol 22:735–752

    Article  CAS  Google Scholar 

  • Galindo HM, Olson DB, Palumbi SR (2006) Seascape genetics: a coupled oceanographic-genetic model predicts population structure of Caribbean corals. Current Biol 16:1622–1626

    Article  CAS  Google Scholar 

  • Gómez R, Erpenbeck D, Van Dijk T, Richelle-Maurer E, Devijver C, Braekman JC, Woldringh C, Van Soest RWM (2002) Identity of cyanobacterial symbionts of Xestospongia muta. Boll Mus Ist Biol Univ Genova 66–67:82–83

    Google Scholar 

  • Gutiérrez-Rodríguez C, Lasker HR (2004) Microsatellite variation reveals high levels of genetic variability and population structure in the gorgonian coral Pseudopterogorgia elisabethae across the Bahamas. Mol Ecol 13:2211–2221

    Article  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp 41:95–98

    CAS  Google Scholar 

  • Hateley JG, Sleeter TD (1993) A biochemical genetic investigation of spiny lobster (Panulirus argus) stock replenishment in Bermuda. Bull Mar Sci 52:993–1006

    Google Scholar 

  • Jones GP, Srinivasan M, Almany GR (2007) Population connectivity and conservation of marine biodiversity. Oceanography 20:100–111

    Google Scholar 

  • Kayal E, Lavrov DV (2008) The mitochondrial genome of Hydra oligactis (Cnidaria, Hydrozoa) sheds new light on animal mtDNA evolution and cnidarian phylogeny. Gene 410:177–186

    Article  PubMed  CAS  Google Scholar 

  • Kerr R, Kelly-Borges M (1994) Biochemical and morphological heterogeneity in the Caribbean sponge Xestospongia muta (Petrosida: Petrosiidae). In: van Soest RWM, van Kempen TMG, Braekman JC (eds) Sponges in time and space. Balkema, Rotterdam, pp 65–73

    Google Scholar 

  • Knowlton N (2000) Molecular genetic analyses of species boundaries in the sea. Hydrobiologia 420:73–90

    Article  CAS  Google Scholar 

  • Knowlton AL, Pierson BJ, Talbot SL, Highsmith RC (2003) Isolation and characterization of microsatellite loci in the intertidal sponge Halichondria panicea. Mol Ecol Notes 3:560–562

    Article  CAS  Google Scholar 

  • Lazoski C, Solé-Cava AM, Boury-Esnault N, Klautau M, Russo CAM (2001) Cryptic speciation in a high gene flow scenario in the oviparous marine sponge Chondrosia reniformis. Mar Biol 139:421–429

    Article  CAS  Google Scholar 

  • López-Legentil S, Song B, McMurray SE, Pawlik JR (2008) Bleaching and stress in coral reef ecosystems: Hsp70 expression by the giant barrel sponge Xestospongia muta. Mol Ecol 17:1840–1850

    Article  PubMed  Google Scholar 

  • Maldonado M, Uriz MJ (1999) Sexual propagation by sponge fragments. Nature 398:476

    Article  CAS  Google Scholar 

  • Mariani S, Uriz MJ, Turon X (2000) Larval bloom of the oviparous sponge Cliona viridis: coupling of larval abundance and adult distribution. Mar Biol 137:783–790

    Article  Google Scholar 

  • McMurray SE, Blum JE, Pawlik JR (2008) Redwood of the reef: Growth and age of the giant barrel sponge Xestospongia muta in the Florida Keys. Mar Biol 155:159–171

    Article  Google Scholar 

  • Mitton JB, Berg CJ Jr, Orr KS (1989) Population structure, larval dispersal, and gene flow in the queen conch, Strombus gigas, of the Caribbean. Biol Bull 177:356–362

    Article  Google Scholar 

  • Moore WS (1995) Inferring phylogenetics from mtDNA variation–mitochondrial-gene trees versus nuclear-gene trees. Evolution 49:718–726

    Article  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nichols SA, Barnes PAG (2005) A molecular phylogeny and historical biogeography of the marine sponge genus Placospongia (Phylum Porifera) indicate low dispersal capabilities and widespread crypsis. J Exp Mar Biol Ecol 323:1–15

    Article  Google Scholar 

  • Palumbi SR, Cipriano F, Hare MP (2001) Predicting nuclear gene coalescence from mitochondrial data. The three-times rule. Evolution 55:859–868

    CAS  Google Scholar 

  • Paul VJ, Ritson-Williams R (2008) Marine chemical ecology. Nat Prod Rep 25:662–695

    Article  PubMed  CAS  Google Scholar 

  • Posada C, Crandall KA (2002) The effect of recombination on the accuracy of phylogeny estimation. J Mol Evol 54:396–402

    PubMed  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49:1280–1283

    Article  Google Scholar 

  • Roberts CM (1997) Connectivity and management of Caribbean coral reefs. Science 278:1454–1459

    Article  PubMed  CAS  Google Scholar 

  • Rot C, Goldfarb I, Ilan M, Huchon D (2006) Putative cross-kingdom horizontal gene transfer in sponge (Porifera) mitochondria. BMC Evol Biol 6:71

    Article  PubMed  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    PubMed  CAS  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin ver. 2000. A software for population genetics data analysis. Genetics and Biometry Laboratory. Department of Anthropology, University of Geneva, Geneva

    Google Scholar 

  • Shulman MJ, Bermingham E (1995) Early life histories, ocean currents, and the population genetics of Caribbean reef fishes. Evolution 49:897–910

    Article  Google Scholar 

  • Silberman JD, Sarver SK, Walsh PJ (1994) Mitochondrial DNA variation and population structure in the spiny lobster Panulirus argus. Mar Biol 120:601–608

    Article  CAS  Google Scholar 

  • Steindler L, Hucheon D, Avni A, Ilan M (2005) 16S rRNA phylogeny of sponge associated cyanobacteria. Appl Environ Microbiol 71:4127–4131

    Article  PubMed  CAS  Google Scholar 

  • Sutherland KP, Porter JW, Torres C (2004) Disease and immunity in Caribbean and Indo-Pacific zooxanthellate corals. Mar Ecol Prog Ser 266:273–302

    Article  Google Scholar 

  • Targett NM, Schmahl GP (1984) Chemical ecology and distribution of sponges in the Salt River Canyon, St. Croix. USVI, NOAA Tech Mem OAR NURP–1, Rockville, MD

  • Tarjuelo I, Posada D, Crandall KA, Pascual M, Turon X (2001) Cryptic species of Clavelina (Ascidiacea) in two different habitats: harbours and rocky littoral zones in the north-western Mediterranean. Mar Biol 139:455–462

    Article  Google Scholar 

  • Taylor MS, Hellberg ME (2003) Genetic evidence for local retention of pelagic larvae in a Caribbean reef fish. Science 299:107–109

    Article  PubMed  CAS  Google Scholar 

  • Uriz MJ (1982) Morfología y comportamiento de la larva parenquímula de Scopalina lophyropoda Schmidt, 1982 (Demospongiae, Halichondrida) y formación del rhagon. Inv Pesq 46:313–322

    Google Scholar 

  • Uriz MJ, Maldonado M, Turon X, Marti R (1998) How do reproductive output, larval behaviour, and recruitment contribute to adult spatial patterns in Mediterranean encrusting sponges? Mar Ecol Prog Ser 167:137–148

    Article  Google Scholar 

  • Vacelet J (1999) Planktonic armoured propagules of the excavating sponge Alectona (Porifera: Demospongiae) are larvae: evidence from Alectona wallichii and A. mesatlantica sp. nov. Memoir Queensl Mus 44:627–642

    Google Scholar 

  • Vicente VP (1990) Response of sponges with autotrophic endosymbionts during the coral-bleaching episode in Puerto Rico (West Indies). Coral Reefs 8:199–202

    Article  Google Scholar 

  • Webster N (2007) Sponge disease: a global threat? Environ Microbiol 9:1363–1375

    Article  PubMed  CAS  Google Scholar 

  • Wörheide G (2006) Low variation in partial cytochrome oxidase subunit I (COI) mitochondrial sequences in the coralline demosponge Astrosclera willeyana across the Indo-Pacific. Mar Biol 148:907–912

    Article  Google Scholar 

  • Wörheide G, Solé-Cava AM, Fromont J (2004) Population genetics and phylogeography of sponges–a workshop synthesis. Boll Mus Ist Biol Univ Genova 68:683–688

    Google Scholar 

  • Wörheide G, Solé-Cava AM, Hooper JNA (2005) Biodiversity, molecular ecology and phylogeography of marine sponges: patterns, implications and outlooks. Integr Comp Biol 45:377–385

    Article  Google Scholar 

  • Wörheide G, Epp LS, Macis L (2008) Deep genetic divergences among Indo-Pacific populations of the coral reef sponge Leucetta chagosensis (Leucettidae): Founder effects, vicariance, or both? BMC Evol Biol 8:24–42

    Article  PubMed  Google Scholar 

  • Zea S (1993) Cover of sponges and other sessile organisms in rocky and coral reef habitats of Santa Marta, Colombian Caribbean Sea. Carib J Sci 29:75–88

    Google Scholar 

Download references

Acknowledgment

Raphael Ritson-Williams provided the samples from Belize. Steve McMurray and Dr. Chris Finelli helped with sampling. Dr. Bongkeun Song provided lab space and access to PCR machines. Dr. Xavier Turon and Dr. Patrick M. Erwin helped with statistical analyses. This study was funded by NOAA’s Undersea Research Center at UNCW (NA 96RU-0260), by NSF’s Biological Oceanography Program (OCE-0550468; including funding of UNOLS ship-time aboard the R/V Seward Johnson), and by the Spanish Government project CTM2007-66635.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. López-Legentil.

Additional information

Communicated by Biology Editor Dr Ruth Gates

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Legentil, S., Pawlik, J.R. Genetic structure of the Caribbean giant barrel sponge Xestospongia muta using the I3-M11 partition of COI. Coral Reefs 28, 157–165 (2009). https://doi.org/10.1007/s00338-008-0430-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-008-0430-3

Keywords

Navigation