Skip to main content
Log in

Exploring multiple quantitative trait loci models of hepatic fibrosis in a mouse intercross

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Most common diseases are attributed to multiple genetic variants, and the feasibility of identifying inherited risk factors is often restricted to the identification of alleles with high or intermediate effect sizes. In our previous studies, we identified single loci associated with hepatic fibrosis (Hfib1Hfib4). Recent advances in analysis tools allowed us to model loci interactions for liver fibrosis. We analysed 322 F2 progeny from an intercross of the fibrosis-susceptible strain BALB/cJ and the resistant strain FVB/NJ. The mice were challenged with carbon tetrachloride (CCl4) for 6 weeks to induce chronic hepatic injury and fibrosis. Fibrosis progression was quantified by determining histological fibrosis stages and hepatic collagen contents. Phenotypic data were correlated to genome-wide markers to identify quantitative trait loci (QTL). Thirteen susceptibility loci were identified by single and composite interval mapping, and were included in the subsequent multiple QTL model (MQM) testing. Models provided evidence for susceptibility loci with strongest association to collagen contents (chromosomes 1, 2, 8 and 13) or fibrosis stages (chromosomes 1, 2, 12 and 14). These loci contained the known fibrosis risk genes Hc, Fasl and Foxa2 and were incorporated in a fibrosis network. Interestingly the hepatic fibrosis locus on chromosome 1 (Hfib5) connects both phenotype networks, strengthening its role as a potential modifier locus. Including multiple QTL mapping to association studies adds valuable information on gene–gene interactions in experimental crosses and human cohorts. This study presents an initial step towards a refined understanding of profibrogenic gene networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andreux PA, Williams EG, Koutnikova H, Houtkooper RH, Champy MF, Henry H, Schoonjans K, Williams RW, Auwerx J (2012) Systems genetics of metabolism: the use of the BXD murine reference panel for multiscalar integration of traits. Cell 150:1287–1299

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Appenrodt B, Sauerbruch T (2012) Susceptibility to spontaneous bacterial peritonitis–are genetics the future? Liver Int 32:177–178

    Article  PubMed  CAS  Google Scholar 

  • Appenrodt B, Grünhage F, Gentemann MG, Thyssen L, Sauerbruch T, Lammert F (2010) Nucleotide-binding oligomerization domain containing 2 (NOD2) variants are genetic risk factors for death and spontaneous bacterial peritonitis in liver cirrhosis. Hepatology 51:1327–1333

    Article  PubMed  CAS  Google Scholar 

  • Arends D, Prins P, Jansen RC, Broman KW (2010) R/QTL: high-throughput multiple QTL mapping. Bioinformatics 26:2990–2992

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bataller R, Brenner DA (2005) Liver fibrosis. J Clin Invest 115:209–218

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Broman KW, Sen S (2009) A guide to QTL Mapping with R/qtl. Springer, New York

    Book  Google Scholar 

  • Broman KW, Wu H, Sen S, Churchill GA (2003) R/QTL: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  PubMed  CAS  Google Scholar 

  • Chambers JC, Zhang W, Sehmi J, Li X, Wass MN, Van der Harst P, Holm H, Sanna S, Kavousi M, Baumeister SE, Coin LJ, Deng G, Gieger C, Heard-Costa NL, Hottenga JJ, Kuhnel B, Kumar V, Lagou V, Liang L, Luan J, Vidal PM, Mateo Leach I, O’Reilly PF, Peden JF, Rahmioglu N, Soininen P, Speliotes EK, Yuan X, Thorleifsson G, Alizadeh BZ, Atwood LD, Borecki IB, Brown MJ, Charoen P, Cucca F, Das D, de Geus EJ, Dixon AL, Doring A, Ehret G, Eyjolfsson GI, Farrall M, Forouhi NG, Friedrich N, Goessling W, Gudbjartsson DF, Harris TB, Hartikainen AL, Heath S, Hirschfield GM, Hofman A, Homuth G, Hypponen E, Janssen HL, Johnson T, Kangas AJ, Kema IP, Kuhn JP, Lai S, Lathrop M, Lerch MM, Li Y, Liang TJ, Lin JP, Loos RJ, Martin NG, Moffatt MF, Montgomery GW, Munroe PB, Musunuru K, Nakamura Y, O’Donnell CJ, Olafsson I, Penninx BW, Pouta A, Prins BP, Prokopenko I, Puls R, Ruokonen A, Savolainen MJ, Schlessinger D, Schouten JN, Seedorf U, Sen-Chowdhry S, Siminovitch KA, Smit JH, Spector TD, Tan W, Teslovich TM, Tukiainen T, Uitterlinden AG, Van der Klauw MM, Vasan RS, Wallace C, Wallaschofski H, Wichmann HE, Willemsen G, Wurtz P, Xu C, Yerges-Armstrong LM, Abecasis GR, Ahmadi KR, Boomsma DI, Caulfield M, Cookson WO, van Duijn CM, Froguel P, Matsuda K, McCarthy MI, Meisinger C, Mooser V, Pietilainen KH, Schumann G, Snieder H, Sternberg MJ, Stolk RP, Thomas HC, Thorsteinsdottir U, Uda M, Waeber G, Wareham NJ, Waterworth DM, Watkins H, Whitfield JB, Witteman JC, Wolffenbuttel BH, Fox CS, Ala-Korpela M, Stefansson K, Vollenweider P, Völzke H, Schadt EE, Scott J, Jarvelin MR, Elliott P, Kooner JS (2011) Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma. Nat Genet 43:1131–1138

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cho JW, Lee CY, Ko Y (2012) Therapeutic potential of mesenchymal stem cells overexpressing human forkhead box A2 gene in the regeneration of damaged liver tissues. J Gastroenterol Hepatol 27:1362–1370

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  PubMed Central  Google Scholar 

  • Civelek M, Lusis AJ (2014) Systems genetics approaches to understand complex traits. Nat Rev Genet 15:34–48

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Darvasi A (1998) Experimental strategies for the genetic dissection of complex traits in animal models. Nat Genet 18:19–24

    Article  PubMed  CAS  Google Scholar 

  • Ghazalpour A, Bennett BJ, Shih D, Che N, Orozco L, Pan C, Hagopian R, He A, Kayne P, Yang WP, Kirchgessner T, Lusis AJ (2014) Genetic regulation of mouse liver metabolite levels. Mol Syst Biol 10:730

    Article  PubMed  PubMed Central  Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    Article  PubMed  CAS  Google Scholar 

  • Hall RA, Liebe R, Hochrath K, Kazakov A, Alberts R, Laufs U, Böhm M, Fischer HP, Williams RW, Schughart K, Weber SN, Lammert F (2014) Systems genetics of liver fibrosis: identification of fibrogenic and expression quantitative trait loci in the BXD murine reference population. PLoS ONE 9:e89279

    Article  PubMed  PubMed Central  Google Scholar 

  • Hammam O, Mahmoud O, Zahran M, Aly S, Hosny K, Helmy A, Anas A (2012) The role of fas/fas ligand system in the pathogenesis of liver cirrhosis and hepatocellular carcinoma. Hepat Mon 12:e6132

    Article  PubMed  PubMed Central  Google Scholar 

  • Hillebrandt S, Goos C, Matern S, Lammert F (2002) Genome-wide analysis of hepatic fibrosis in inbred mice identifies the susceptibility locus Hfib1 on chromosome 15. Gastroenterology 123:2041–2051

    Article  PubMed  CAS  Google Scholar 

  • Hillebrandt S, Wasmuth HE, Weiskirchen R, Hellerbrand C, Keppeler H, Werth A, Schirin-Sokhan R, Wilkens G, Geier A, Lorenzen J, Kohl J, Gressner AM, Matern S, Lammert F (2005) Complement factor 5 is a quantitative trait gene that modifies liver fibrogenesis in mice and humans. Nat Genet 37:835–843

    Article  PubMed  CAS  Google Scholar 

  • Jamall IS, Finelli VN, Que Hee SS (1981) A simple method to determine nanogram levels of 4-hydroxyproline in biological tissues. Anal Biochem 112:70–75

    Article  PubMed  CAS  Google Scholar 

  • Korstanje R, Li R, Howard T, Kelmenson P, Marshall J, Paigen B, Churchill G (2004) Influence of sex and diet on quantitative trait loci for HDL cholesterol levels in an SM/J by NZB/BlNJ intercross population. J Lipid Res 45:881–888

    Article  PubMed  CAS  Google Scholar 

  • Krawczyk M, Müllenbach R, Weber SN, Zimmer V, Lammert F (2010) Genome-wide association studies and genetic risk assessment of liver diseases. Nat Rev Gastroenterol Hepatol 7:669–681

    Article  PubMed  Google Scholar 

  • Lee YA, Wallace MC, Friedman SL (2015) Pathobiology of liver fibrosis: a translational success story. Gut 64:830–841

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li Z, White P, Tuteja G, Rubins N, Sackett S, Kaestner KH (2009) Foxa1 and Foxa2 regulate bile duct development in mice. J Clin Invest 119:1537–1545

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li Q, Qu HQ, Rentfro AR, Grove ML, Mirza S, Lu Y, Hanis CL, Fallon MB, Boerwinkle E, Fisher-Hoch SP, McCormick JB (2012) PNPLA3 polymorphisms and liver aminotransferase levels in a Mexican American population. Clin Invest Med 35:E237–245

    PubMed  CAS  PubMed Central  Google Scholar 

  • Liebe R, Hall RA, Williams RW, Dooley S, Lammert F (2013) Systems genetics of hepatocellular damage in vivo and in vitro: identification of a critical network on chromosome 11 in mouse. Physiol Genomics 45:931–939

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lu P, Liu H, Yin H, Yang L (2011) Expression of angiotensinogen during hepatic fibrogenesis and its effect on hepatic stellate cells. Med Sci Monit 17:BR248-256

    Google Scholar 

  • Manolio TA (2010) Genomewide association studies and assessment of the risk of disease. N Engl J Med 363:166–176

    Article  PubMed  CAS  Google Scholar 

  • Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TF, McCarroll SA, Visscher PM (2009) Finding the missing heritability of complex diseases. Nature 461:747–753

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Marschall HU, Krawczyk M, Grünhage F, Katsika D, Einarsson C, Lammert F (2013) Gallstone disease in Swedish twins is associated with the Gilbert variant of UGT1A1. Liver Int 33:904–908

    Article  PubMed  Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org/. Vienna, Austria

  • Schneppenheim R, Budde U (2011) Von Willebrand factor and ADAMTS13 balancing primary haemostasis. Hamostaseologie 31:275–280

    Article  PubMed  CAS  Google Scholar 

  • Singer MS, Phillips JJ, Lemjabbar-Alaoui H, Wang YQ, Wu J, Goldman R, Rosen SD (2015) SULF2, a heparan sulfate endosulfatase, is present in the blood of healthy individuals and increases in cirrhosis. Clin Chim Acta 440:72–78

    Article  PubMed  CAS  Google Scholar 

  • Solberg LC, Baum AE, Ahmadiyeh N, Shimomura K, Li R, Turek FW, Churchill GA, Takahashi JS, Redei EE (2004) Sex- and lineage-specific inheritance of depression-like behavior in the rat. Mamm Genome 15:648–662

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan A, Narechania A (2003) PANTHER: a library of protein families and subfamilies indexed by function. Genome Res 13:2129–2141

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tuncer C, Oo YH, Murphy N, Adams DH, Lalor PF (2013) The regulation of T-cell recruitment to the human liver during acute liver failure. Liver Int 33:852–863

    Article  PubMed  CAS  Google Scholar 

  • Walkin L, Herrick SE, Summers A, Brenchley PE, Hoff CM, Korstanje R, Margetts PJ (2013) The role of mouse strain differences in the susceptibility to fibrosis: a systematic review. Fibrogenesis Tissue Repair 6:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Williams RW, Manly KF (2003) WebQTL: web-based complex trait analysis. Neuroinformatics 1:299–308

    Article  PubMed  Google Scholar 

  • Wang ZL, Wu XH, Song LF, Wang YS, Hu XH, Luo YF, Chen ZZ, Ke J, Peng XD, He CM, Zhang W, Chen LJ, Wei YQ (2009) Phosphoinositide 3-kinase gamma inhibitor ameliorates concanavalin A-induced hepatic injury in mice. Biochem Biophys Res Commun 386:569–574

    Article  PubMed  CAS  Google Scholar 

  • Wetsel RA, Fleischer DT, Haviland DL (1990) Deficiency of the murine fifth complement component (C5). A 2-base pair gene deletion in a 5′-exon. J Biol Chem 265:2435–2440

    PubMed  CAS  Google Scholar 

  • Williams RW, Gu J, Qi S, Lu L (2001) The genetic structure of recombinant inbred mice: high-resolution consensus maps for complex trait analysis. Genome Biol 2:RESEARCH0046

    PubMed  CAS  PubMed Central  Google Scholar 

  • Williams SM, Ritchie MD, Phillips JA 3rd, Dawson E, Prince M, Dzhura E, Willis A, Semenya A, Summar M, White BC, Addy JH, Kpodonu J, Wong LJ, Felder RA, Jose PA, Moore JH (2004) Multilocus analysis of hypertension: a hierarchical approach. Hum Hered 57:28–38

    Article  PubMed  Google Scholar 

  • Zeng ZB (1993) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci USA 90:10972–10976

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

Genotyping was supported by grant from the National Heart, Lung, and Blood Institute (NHLBI) and performed by the Mammalian Genotyping Service at the Center for Medical Genetics, Marshfield Clinic Research Foundation (Marshfield, WI, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Lammert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 271 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hall, R.A., Hillebrandt, S. & Lammert, F. Exploring multiple quantitative trait loci models of hepatic fibrosis in a mouse intercross. Mamm Genome 27, 70–80 (2016). https://doi.org/10.1007/s00335-015-9609-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-015-9609-4

Keywords

Navigation