Skip to main content

Advertisement

Log in

An integrated approach to relate Holocene climatic, hydrological, morphological and vegetation changes in the southeastern Amazon region

  • Original Article
  • Published:
Vegetation History and Archaeobotany Aims and scope Submit manuscript

Abstract

The geomorphological analysis of the river Tocantins alluvial area was carried out by remote sensing techniques, jointly with studies of sedimentary facies, mineralogy and geochemistry, pollen and spores, C and N isotopes data and radiocarbon dating of a sediment core from a floodplain lake, near the river Tocantins in the southeastern Amazon region. The aim was to identify and discuss the relationship between the main geomorphological processes and climatic factors, as well as their influence on vegetation patterns. The data indicate three phases of sediment and organic matter accumulation associated with vegetation changes during the Holocene: in Phase 1 (>7760 ± 80 cal yrs b.p.), the channel was gradually being disconnected from its main course, accumulating organic matter from terrestrial woody plants; in Phase 2 (>7760 ± 80 to 5145 ± 175 cal yrs b.p.), the very low energy flows allowed the deposition of autochthonous organic mud from suspension. Herbaceous vegetation and a Mauritia palm-swamp dominated the study area, followed by an increase in the contribution of freshwater dissolved organic carbon (DOC) to the lake; Phase 3 (5145 ± 175 cal yrs b.p. until present) records the expansion of ferns and arboreal plants, and greater freshwater organic matter input into the lake with anoxic water conditions. The development of the studied lake occurred by geomorphological changes and the filling process of an abandoned channel according to hydrodynamics and vegetation changes which were probably influenced by climatic changes during the Holocene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abreu FAM (1978) Estratigrafia e evolução estrutural do segmento setentrional da Faixa de Dobramentos Paraguai-Araguaia. Dissertation, Universidade Federal do Pará, Belém

  • Absy ML, Cleef A, Fournier M, Martin L, Servant M, Siffeddine A, Silva FD, Soubiès F, Suguio KT, Turcq B, Van der Hammen T (1991) Mise em évidence de Quatre phases d’ouverture de la forêt dense dans le sud-est de L’Amazonie au cours des 60000 dernières années. Première comparaison avec d’autres régions tropicales. Comptes Rendus Academie des Sciences 312:673–678

    Google Scholar 

  • Allen JRL (1965) A review of the origin and characteristics of recent alluvial sediments. Sedimentology 5:89–191

    Article  Google Scholar 

  • Almeida HDF (2006) Mineralogia, geoquímica, fertilidade e origem dos sedimentos de praia (barra em pontal) das Bacias dos Rios Purus e Juruá no Estado do Acre. Dissertation, Centro de Geociências, Universidade Federal do Pará

  • Ashworth PJ, Best JL, Roden JE, Bristow CS, Klaassen GJ (2000) Morphological evolution and dynamics of a large, sand braid-bar, Jamuna River, Bangladesh. Sedimentology 47:533–555

    Article  Google Scholar 

  • Ayres JM, Clutton-Brock TH (1992) River boundaries and species range size in Amazonian primates. Am Nat 140:531–537

    Article  Google Scholar 

  • Behling H, Costa ML (2000) Holocene environmental changes from the Rio Curuá record in the Caxiuanã region, eastern Amazon Basin. Quat Res 53:369–377

    Article  Google Scholar 

  • Behling H, Hooghiemstra H (2000) Holocene Amazon rain forest—savanna dynamics and climatic implications: high resolution pollen record Laguna Loma Linda in eastern Colombia. J Quat Sci 15:687–695

    Article  Google Scholar 

  • Behling H, Hooghiemstra H, Negret AJ (1998) Holocene history of the Chocó rain forest from Laguna Piusbi, southern Pacific lowlands of Colombia. Quat Res 50:300–308

    Article  Google Scholar 

  • Berrêdo JF (2006) Geoquímica dos sedimentos de manguezais do nordeste do estado do Pará: o exemplo do estuário do rio Marapanim. Doctoral Thesis, Centro de Geociências, Universidade Federal do Pará

  • Bonaccorso E, Koch I, Peterson AT (2006) Pleistocene fragmentation of Amazonian species’ range. Divers Distrib 12:157–164

    Article  Google Scholar 

  • Bridge JS (2003) Rivers and floodplains. Blackwell, Oxford

    Google Scholar 

  • Bridge JS (2006) Fluvial facies model. In: Posamentier HW, Walker RG (eds) Facies model revisited, SEPM (Society for Sedimentary Geology). Tulsa, Oklahoma, pp 85–170

    Google Scholar 

  • Bush MB (1994) Amazonian speciation: a necessary complex model. J Biogeogr 21:5–17

    Article  Google Scholar 

  • Bush MB, Silman MR, Listopad CMCS (2007) A regional study of Holocene climate change and human occupation in Peruvian Amazonia. J Biogeogr 34:1342–1356

    Article  Google Scholar 

  • Câmara G, Souza RCM, Freitas UM, Garrido J (1996) SPRING: integrating remote sensing and GIS by object-oriented data modeling. Comput Graph 20:395–403

    Article  Google Scholar 

  • Chavez PS (1988) An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sens Environ 24:450–479

    Article  Google Scholar 

  • Chavez PS, Berlin GL, Sowers LB (1982) Statistical method for selecting Landsat MSS ratios. J Appl Photogr Eng 8:23–30

    Google Scholar 

  • Colinvaux PA, De Oliveira PE, Patiño JEM (1999) Amazon pollen manual and atlas—Manual e atlas palinológico da Amazônia. Hardwood Academic, Amsterdam

    Google Scholar 

  • Costa ML, Kern DC (1999) Geochemical signatures of tropical soils with archaeological black earth in the Amazon, Brazil. J Geochem Explor 66:369–385

    Article  Google Scholar 

  • Costa ML, Behling H, Berrêdo JF, Siqueira NVM (2004) Mineralogical, geochemical and palynological studies of late Holocene mangrove sediments from northeastern Para State, Brazil. Revista Brasileira de Geociências 34:79–488

    Google Scholar 

  • CPRM (2009) Brazilian Geological Service. Geological information system: Marabá Project. On line dataset, Projeto Marabá: Geologia 7MB. ftp://ftp.cprm.gov.br/pub/pdf/maraba/maraba_geologia.pdf. Accessed 15 July 2009

  • CPRM (2010) Brazilian Geological Service. Geological information system. On line dataset, Folhas NA/SA-22 23MB. http://geobank.sa.cprm.gov.br/. Accessed 13 Aug 2010

  • Da Silva AKT, Guimaraes JTF, Lemos VP, Costa ML, Kern DC (2012) Mineralogia e geoquímica de perfis de solo com Terra Preta Arqueológica do município de Bom Jesus do Tocantins, sudeste da Amazônia. Acta Amazonica 42:1–15

    Article  Google Scholar 

  • Deines P (1980) The isotopic composition of reduced organic carbon. In: Fritz P, Fontes JC (eds) The terrestrial environment. Handbook of environmental isotope geochemistry. (The terrestrial environment vol 1). Elsevier, Amsterdam, pp 329–406

  • ESRI (2006) ArcGIS Version 9.0 Software. Redland, California

  • Fægri K, Iversen J (1989) In: Fægri K, Kaland PE, Krzywinski K (eds) Textbook of pollen analysis, 4th edn. Wiley, Chichester

  • Faure G (1998) Principles and applications of geochemistry—a comprehensive textbook for geology students, 2nd edn. Prentice Hall, Ohio State University, USA

  • Fisch G, Marengo JA, Nobre CA (1998) Uma revisão geral sobre o clima da Amazônia. Acta Amazonica 28:101–126

    Google Scholar 

  • Fisk HN (1944) Geological investigation of the alluvial valley of the lower Mississippi River. Mississippi River Commission, Vicksburg

    Google Scholar 

  • Fisk HN (1947) Fine-grained alluvial deposits and their effects on Mississippi River activity. River Commission, Vicksburg

    Google Scholar 

  • Freitas HA, Pessenda LCR, Aravena R, Gouveia SEM, Ribeiro AS, Boulet R (2001) Late Quaternary vegetation dynamics in the Southern Amazon Basin inferred from carbon isotopes in soil organic matter. Quat Res 55:39–46

    Article  Google Scholar 

  • Glenn JL, Dahl AR (1959) Characteristics and distribution of some Missouri River deposits. Proc Iowa Acad Sci 66:302–311

    Google Scholar 

  • Global Mapper LLC (2009) Global Mapper Version 9.0 Software. Colorado, Parker

  • Goh KM (2006) Removal of contaminants to improve the reliability of radiocarbon dates of peats. J Soil Sci 29:340–349

    Google Scholar 

  • Gouveia SEM, Pessenda LCR, Aravena R, Boulet R, Roveratti R, Gomes BM (1997) Dinâmica de vegetações durante o Quaternário recente no sul do Amazonas indicada pelos isótopos do carbono (12C, 13C e 14C). Geochimica Brasiliensis 11:355–367

    Google Scholar 

  • Grimm EC (1987) CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of the incremental sum of square. Comput Geosci 13:13–35

    Article  Google Scholar 

  • Grimm EC (1992) Tilia and Tilia-graph: pollen spreadsheet and graphics programs. Program and Abstracts, 8th International Palynological Congress, Aix-en-Provence [France], September 6–12, 1992, p 56

  • Grohmann CH, Riccomini C, Chamani MAC (2011) Regional scale analysis of landform configuration with base-level maps. Hydrol Earth Syst Sci Discuss 8:89–110

    Article  Google Scholar 

  • Guimarães JTF, Cohen MCL, Pessenda LCR, França MC, Smith CB, Nogueira ACR (2012) Mid and late Holocene sedimentary process and palaeovegetation changes near the mouth of the Amazon River. Holocene 22:359–370

    Article  Google Scholar 

  • Haffer J (1990) Avian species richness in tropical South America. Stud Neotrop Fauna Environ 25:157–183

    Article  Google Scholar 

  • Haines EB (1976) Stable carbon isotope ratios in biota, soils and tidal water of a Georgia salt marsh. Estuar Coast Mar Sci 4:609–616

    Article  Google Scholar 

  • Hayakawa EH, Rossetti DF, Valeriano MM (2010) Applying DEM-SRTM for reconstructing a late Quaternary paleodrainage in Amazonia. Earth Planet Sci Lett 297:262–270

    Article  Google Scholar 

  • Hesse M, Halbritter H, Zetter R, Weber M, Buchner R, Frosch-Radivo A, Ulrich S (2008) Pollen terminology: an illustrated handbook. Springer, New York

    Google Scholar 

  • Hofton M, Dubayah R, Blair JB, Rabine D (2006) Validation of SRTM elevations over vegetated and non-vegetated terrain using medium footprint Lidar. Photogramm Eng Remote Sens 72:279–285

    Google Scholar 

  • Horbe AMC, Behling H, Nogueira ACR, Mapes R (2011) Environmental changes in the western Amazônia: morphological framework, geochemistry, palynology and radiocarbon dating data. Anais da Academia Brasileira de Ciências 83:863–874

    Article  Google Scholar 

  • Huntley B, Green RE, Collingham YC, Hill JK, Willis SG, Bartlein PJ, Cramer W, Hagemeijer WJM, Thomas CJ (2004) The performance of models relating species geographical distributions to climate is independent of trophic level. Ecol Lett 7:417–426

    Article  Google Scholar 

  • Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277–279

    Google Scholar 

  • Lamb AL, Wilson GP, Leng MJ (2006) A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. Earth Sci Rev 75:29–57

    Article  Google Scholar 

  • Latrubesse EM, Stevaux JC, Sinha R (2005) Tropical rivers. Geomorphology 70:187–206

    Article  Google Scholar 

  • Lima HN, Schaefer CER, Mello JWV, Gilkes RJ, Ker JC (2002) Pedogenesis and pre-Columbian land use of “Terra Preta Anthrosols” (Indian black earth) of Western Amazonia. Geoderma 110:1–17

    Article  Google Scholar 

  • Mayle FE, Power MJ (2008) Impact of a drier Early-Mid-Holocene climate upon Amazonian forests. Phil Trans Royal Soc B 363:1829–1838

    Article  Google Scholar 

  • Mayle FE, Burbridge R, Killeen TJ (2000) Millennial-scale dynamics of southern Amazonian rain forests. Science 290:2,291–2,294

    Article  Google Scholar 

  • McCann JM, Woods WI, Meyer DW (2001) Organic matter and anthrosols in Amazonia: interpreting the amerindian legacy. In: Rees RM, Ball BC, Campbell CD, Watson CA (eds) Sustainable management of soil organic matter. CABI Publishing, Wallingford, pp 180–189

    Google Scholar 

  • Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 114:289–302

    Article  Google Scholar 

  • Meyers PA (1997) Organic geochemical proxies of paleoceanographic, paleolimnologic and paleoclimatic processes. Org Geochem 27:213–250

    Article  Google Scholar 

  • Miall AD (1978) Facies types and vertical profile models in braided river deposits: a summary. In: Miall AD (ed) Fluvial sedimentology. Canadian Society of Petroleum Geologists, Calgary, pp 597–604

    Google Scholar 

  • Miall AD (1985) Architectural-element analysis: a new method of facies analysis applied to fluvial deposits. Earth Sci Rev 22:261–308

    Article  Google Scholar 

  • Middelburg JJ, Nieuwenhuize J (1998) Carbon and nitrogen stable isotopes in suspended matter and sediments from the Schelde Estuary. Mar Chem 60:217–225

    Article  Google Scholar 

  • Nascimento MS, Góes AM (2007) Petrografia de arenitos e minerais pesados de depósitos cretáceos (Grupo Itapecuru), Bacia de São Luís-Grajaú, norte do Brasil. Revista Brasileira de Geociências 37:50–63

    Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371

    Article  Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1,633–1,644

    Article  Google Scholar 

  • Pessenda LCR, Gouveia SEM, Aravena R, Gomes BM, Boulet R, Ribeiro AS (1998) 14C dating and stable carbon isotopes of soil organic matter in forest-savanna boundary areas in southern Brazilian Amazon Region. Radiocarbon 40:1,013–1,022

    Google Scholar 

  • Pessenda LCR, Boulet R, Aravena R, Rosolen V, Gouveia SEM, Ribeiro AS, Lamote M (2001) Origin and dynamics of soil organic matter and vegetation changes during the Holocene in a forest-savanna transition zone, Brazilian Amazon region. Holocene 11:250–254

    Article  Google Scholar 

  • Pessenda LCR, Ribeiro AS, Gouveia SEM, Aravena R, Boulet R, Bendassoli JA (2004a) Vegetation dynamics during the late Pleistocene in the Barreirinhas region, Maranhão State, northeastern Brazil, based on carbon isotopes in soil organic matter. Quat Res 62:183–193

    Article  Google Scholar 

  • Pessenda LCR, Gouveia SEM, Aravena R, Boulet R, Valencia EPE (2004b) Holocene fire and vegetation changes in southeastern Brazil as deduced from fossil charcoal and soil carbon isotopes. Quat Int 114:35–43

    Article  Google Scholar 

  • Peterson BJ, Fry B, Hullar M, Saupe S, Wright R (1994) The distribution and stable carbon isotope composition of dissolved organic carbon in estuaries. Estuaries 17:111–121

    Article  Google Scholar 

  • Raymond PA, Bauer JE (2001) Use of 14C and 13C natural abundances for evaluating riverine, estuarine, and coastal DOC and POC sources and cycling: a review and synthesis. Org Geochem 32:469–485

    Article  Google Scholar 

  • Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand CJH, Blackwell PG, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Hogg AG, Hughen KA, Kromer B, McCormac FG, Manning SW, Ramsey CB, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, Van der Plicht J, Weyhenmeyer CE (2004) IntCal04 Terrestrial radiocarbon age calibration 26–0 ka b.p. Radiocarbon 46:1,029–1,058

    Google Scholar 

  • Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, Van der Plicht J, Weyhenmeyer CE (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal b.p. Radiocarbon 51:1,111–1,150

    Google Scholar 

  • Ribeiro RJ, Higushi N, Santos J, Azevedo CP (1999) Estudo fitossociológico nas regiões de Carajás e Marabá—Pará, Brasil. Acta Amazonica 29:207–222

    Google Scholar 

  • Rossetti DF, Truckenbrodt W (1997) Revisão estratigráfica para os depósitos do Albiano-Terciário Inferior (?) na Bacia de São Luís, Maranhão. Boletim do Museu Paraense Emílio Goeldi 9:29–41

    Google Scholar 

  • Rossetti DF, Almeida S, Amaral DD, Lima CM, Pessenda LCR (2010) Coexistence of forest and savanna in an Amazonian area from a geological perspective. J Veget Sci 21:120–132

    Article  Google Scholar 

  • Roubik DW, Moreno JE (1991) Pollen and spores of Barro Colorado island. Missouri Botanical Garden, Saint Louis

    Google Scholar 

  • Schidlowski M, Hayes JM, Kaplan IR (1983) Isotopic inferences of ancient biochemistries: carbon, sulphur, hydrogen and nitrogen. In: Scholf JW (ed) Earth’s earliest biosphere, its origin and evolution. Princeton University Press, Princeton, pp 149–186

    Google Scholar 

  • Sifeddine A, Fröhlich F, Fournier M, Martin L, Servant M, Soubiés F (1994) La sédimentation lacustre indicateur de changements des paléoenvironnements au cous des 30000 dernières annèes (Carajas, Amazonie, Brésil). Comptes rendus de l’Académie des sciences 318:1,645–1,652

    Google Scholar 

  • Soares-Filho BS, Nepstad D, Curran L, Cerqueira G, Garcia RA, Ramos CA, Lefebvre P, Schlesinger P, Voll E, McGrath D (2005) Cenários de desmatamento para Amazônia. Estudos Avançados 19:138–152

    Article  Google Scholar 

  • Sombroek W, Kern D, Rodrigues T, Cravo MS, Cunha TJ, Woods W, Glaser B (2002) Terra Preta and Terra Mulata: pre-Columbian Amazon kitchen middens and agricultural fields, their sustainability and their replication. 17th World Congress of Soil Science Bangkok. http://www.annadana.com/actu/fichiers/Caquetabasin.pdf. Accessed 12 Aug 2010

  • Spear FS (1993) Metamorphic phase-equilibria and pressure–temperature–time paths. Mineralogical Society of America, Washington DC

    Google Scholar 

  • Stuiver M, Polach HA (1977) Discussion: reporting of 14C data. Radiocarbon 19:355–363

    Google Scholar 

  • Taylor SR, Mclennan SM (1985) The continental crust: its composition and evolution. Blackwell, Victoria

  • Ter Steege H, Pitman N, Sabatier D, Castellanos H, Van Der Hout P, Daly DC, Silveira M, Phillips O, Vasquez R, Van Andel T, Duivenvoorden J, Oliveira AA, Ek R, Lilwah R, Thomas R, Van Essen J, Baider C, Maas P, Mori S, Terborgh J, Vargas PN, Mogollón H, Morawetz W (2003) A spatial model of tree-diversity and -density for the Amazon Region. Biodivers Conserv 12:2,255–2,276

    Article  Google Scholar 

  • Thornton SF, McManus J (1994) Applications of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: evidence from the Tay Estuary, Scotland. Estuar Coast Shelf Sci 38:219–233

    Article  Google Scholar 

  • Tuomisto H, Ruokolainen K, Kalliola R, Linna A, Danjoy W, Rodriguez Z (1995) Dissecting Amazonian biodiversity. Science 269:63–66

    Article  Google Scholar 

  • Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the Earth’s crust. Geol Soc Am Bull 72:175–192

    Article  Google Scholar 

  • Tyson RV (1995) Sedimentary organic matter: organic facies and palynofacies. Chapman and Hall, London

    Google Scholar 

  • University of Maryland (2010) Global land cover facility—Earth Science Data Interface. Maryland. http://glcfapp.umiacs.umd.edu:8080/esdi/index.jsp. Accessed 10 Dec 2010

  • Walker RG (1992) Facies, facies models and modern stratigrahic concepts. In: Walker RG, James NP (eds) Facies models—response to sea level change. Geological Association of Canada, Ontario, pp 1–14

    Google Scholar 

  • Weaver CE, Pollard LD (1973) The chemistry of clay minerals. Elsevier, Amsterdam

    Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochem Cosmochem Acta 59:1,217–1,232

    Article  Google Scholar 

  • Weng C, Bush MB, Athens JS (2002) Two histories of climate change and hydrarch succession in Ecuadorian Amazonia. Rev Palaeobot Palynol 120:73–90

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by CNPq (Project 562398/2008-2). The second authors hold a scholarship from CNPq (Processes 302943/2008-0). The authors thank the members of the Laboratório de Dinâmica Costeira, Universidade Federal do Pará, the Laboratório Carbono 14, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo-USP, and the Deutsche Forschungsgemeinschaft (DFG) for support with fieldwork and radiocarbon dating.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Tasso Felix Guimarães.

Additional information

Communicated by P.I. Moreno M.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 64 kb)

Supplementary material 2 (DOC 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guimarães, J.T.F., Cohen, M.C.L., França, M.C. et al. An integrated approach to relate Holocene climatic, hydrological, morphological and vegetation changes in the southeastern Amazon region. Veget Hist Archaeobot 22, 185–198 (2013). https://doi.org/10.1007/s00334-012-0374-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00334-012-0374-y

Keywords

Navigation