Skip to main content
Log in

Splitting Potential and the Poincaré-Melnikov Method for Whiskered Tori in Hamiltonian Systems

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Summary.

We deal with a perturbation of a hyperbolic integrable Hamiltonian system with n+1 degrees of freedom. The integrable system is assumed to have n -dimensional hyperbolic invariant tori with coincident whiskers (separatrices).

Following Eliasson, we use a geometric approach closely related to the Lagrangian properties of the whiskers, to show that the splitting distance between the perturbed stable and unstable whiskers is the gradient of a periodic scalar function of n phases, which we call splitting potential. This geometric approach works for both the singular (or weakly hyperbolic) case and the regular (or strongly hyperbolic) case, and provides the existence of at least n+1 homoclinic intersections between the perturbed whiskers.

In the regular case, we also obtain a first-order approximation for the splitting potential, that we call Melnikov potential. Its gradient, the (vector) Melnikov function, provides a first-order approximation for the splitting distance. Then the nondegenerate critical points of the Melnikov potential give rise to transverse homoclinic intersections between the whiskers. Generically, when the Melnikov potential is a Morse function, there exist at least 2 n critical points.

The first-order approximation relies on the n -dimensional Poincaré-Melnikov method, to which an important part of the paper is devoted. We develop the method in a general setting, giving the Melnikov potential and the Melnikov function in terms of absolutely convergent integrals, which take into account the phase drift along the separatrix and the first-order deformation of the perturbed hyperbolic tori. We provide formulas useful in several cases, and carry out explicit computations that show that the Melnikov potential is a Morse function, in different kinds of examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received January 18, 1999; final revision received October 25, 1999; accepted December 12, 1999

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delshams, A., Gutiérrez, P. Splitting Potential and the Poincaré-Melnikov Method for Whiskered Tori in Hamiltonian Systems. J. Nonlinear Sci. 10, 433–476 (2000). https://doi.org/10.1007/s003329910016

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s003329910016

Keywords

Navigation