Skip to main content
Log in

Energy Bounds for a Compressed Elastic Film on a Substrate

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We study pattern formation in a compressed elastic film which delaminates from a substrate. Our key tool is the determination of rigorous upper and lower bounds on the minimum value of a suitable energy functional. The energy consists of two parts, describing the two main physical effects. The first part represents the elastic energy of the film, which is approximated using the von Kármán plate theory. The second part represents the fracture or delamination energy, which is approximated using the Griffith model of fracture. A simpler model containing the first term alone was previously studied with similar methods by several authors, assuming that the delaminated region is fixed. We include the fracture term, transforming the elastic minimisation into a free boundary problem, and opening the way for patterns which result from the interplay of elasticity and delamination. After rescaling, the energy depends on only two parameters: the rescaled film thickness, \({\sigma }\), and a measure of the bonding strength between the film and substrate, \({\gamma }\). We prove upper bounds on the minimum energy of the form \({\sigma }^a {\gamma }^b\) and find that there are four different parameter regimes corresponding to different values of a and b and to different folding patterns of the film. In some cases, the upper bounds are attained by self-similar folding patterns as observed in experiments. Moreover, for two of the four parameter regimes we prove matching, optimal lower bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ambrosio, L., Coscia, A., Dal Maso, G.: Fine properties of functions with bounded deformation. Arch. Ration. Mech. Anal. 139, 201–238 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems. In: Ball, J. M., Friedlander, E. M., Macdonald, I. G., Nirenberg, L., Penrose, R., Stuart, J. T. (eds.) Mathematical Monographs. Oxford University Press, Oxford (2000)

  • Annabattula, R.K., Veenstra, J.M., Mei, Y.F., Schmidt, O.G., Onck, P.R.: Self-organization of linear nanochannel networks. Phys. Rev. B 81, 224114 (2010)

    Article  Google Scholar 

  • Audoly, B.: Stability of straight delamination blisters. Phys. Rev. Lett. 83, 4124–4127 (1999)

    Article  Google Scholar 

  • Audoly, B., Boudaoud, A.: Self-similar structures near boundaries in strained systems. Phys. Rev. Lett. 91, 086105 (2003)

    Article  Google Scholar 

  • Audoly, B., Roman, B., Pocheau, A.: Secondary buckling patterns of a thin plate under in-plane compression. Eur. Phys. J. B 27, 7–10 (2002)

    Google Scholar 

  • Bedrossian, J., Kohn, R.V.: Blister patterns and energy minimization in compressed thin films on compliant substrates. Commun. Pure Appl. Math. 68, 472–510 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Bella, P., Kohn, R.V.: Wrinkles as the result of compressive stresses in an annular thin film. Commun. Pure Appl. Math. 67, 693–747 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Bella, P., Kohn, R.V.: The coarsening of folds in hanging drapes. In: MPI-MIS Preprint 78/2015 (2015)

  • Ben Belgacem, H., Conti, S., DeSimone, A., Müller, S.: Rigorous bounds for the Föppl-von Kármán theory of isotropically compressed plates. J. Nonlinear Sci. 10, 661–683 (2000)

  • Ben Belgacem, H., Conti, S., DeSimone, A., Müller, S.: Energy scaling of compressed elastic films. Arch. Ration. Mech. Anal. 164, 1–37 (2002)

  • Bhattacharya, K., Fonseca, I., Francfort, G.: An asymptotic study of the debonding of thin films. Arch. Ration. Mech. Anal. 161, 205–229 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Bourne, D., Conti, S., Müller, S.: Folding patterns in partially delaminated thin films. In: Pandolfi, A., Weinberg. K. (eds) Innovative Numerical Approaches for Multi-field and Multi-scale Problems. Lecture Notes in Applied and Computational Mechanics, vol. 81, pp. 25–39 (2016)

  • Cendula, P., Kiravittaya, S., Mei, Y.F., Deneke, Ch., Schmidt, O.G.: Bending and wrinkling as competing relaxation pathways for strained free-hanging films. Phys. Rev. B 79, 085429 (2009)

    Article  Google Scholar 

  • Chambolle, A., Conti, S., Francfort, G.: Korn-Poincaré inequalities for functions with a small jump set. Indiana Univ. Math. J. 65, 1373–1399 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Choksi, R., Conti, S., Kohn, R.V., Otto, F.: Ground state energy scaling laws during the onset and destruction of the intermediate state in a type-I superconductor. Commun. Pure Appl. Math. 61, 595–626 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Choksi, R., Kohn, R.V., Otto, F.: Energy minimization and flux domain structure in the intermediate state of a type-I superconductor. J. Nonlinear Sci. 14, 119–171 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Conti, S., DeSimone, A., Müller, S.: Self-similar folding patterns and energy scaling in compressed elastic sheets. Comput. Meth. Appl. Mech. Eng. 194, 2534–2549 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Conti, S., Maggi, F.: Confining thin elastic sheets and folding paper. Arch. Ration. Mech. Anal. 187, 1–48 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Conti, S., Otto, F., Serfaty, S.: Branched microstructures in the Ginzburg–Landau model of type-I superconductors. SIAM J. Math. Anal. 48, 2994–3034 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Conti, S., Zwicknagl, B.: Low volume-fraction microstructures in martensites and crystal plasticity. Math. Models Methods Appl. Sci. 26, 1319–1355 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Gioia, G., Ortiz, M.: Delamination of compressed thin films. Adv. Appl. Mech. 33, 119–192 (1997)

    Article  MATH  Google Scholar 

  • Gioia, G., Ortiz, M.: Determination of thin-film debonding parameters from telephone-cord measurements. Acta Mater. 46, 169–175 (1998)

    Article  Google Scholar 

  • Huang, R., Im, S.H.: Dynamics of wrinkle growth and coarsening in stressed thin films. Phys. Rev. Lett. 74, 026214 (2006)

    Google Scholar 

  • Ionov, L.: Biomimetic 3D self-assembling biomicroconstructs by spontaneous deformation of thin polymer films. J. Mater. Chem. 22, 19366–19375 (2012)

    Article  Google Scholar 

  • Jin, W., Kohn, R.V.: Singular perturbation and the energy of folds. J. Nonlinear Sci. 10, 355–390 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Jin, W., Sternberg, P.: Energy estimates of the von Kármán model of thin-film blistering. J. Math. Phys. 42, 192–199 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Kohn, R.V., Müller, S.: Branching of twins near an austenite—twinned-martensite interface. Philos. Mag. A 66, 697–715 (1992)

    Article  Google Scholar 

  • Kohn, R.V., Müller, S.: Surface energy and microstructure in coherent phase transitions. Commun. Pure Appl. Math. 47, 405–435 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Kohn, R.V., Nguyen, H.-M.: Analysis of a compressed thin film bonded to a compliant substrate: the energy scaling law. J. Nonlinear Sci. 23, 343–362 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Mei, Y., Thurmer, D.J., Cavallo, F., Kiravittaya, S., Schmidt, O.G.: Semiconductor sub-micro-/nanochannel networks by deterministic layer wrinkling. Adv. Mater. 19, 2124–2128 (2007)

    Article  Google Scholar 

  • Ortiz, M., Gioia, G.: The morphology and folding patterns of buckling-driven thin-film blisters. J. Mech. Phys. Solids 42, 531–559 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Pomeau, Y.: Buckling of thin plates in the weakly and strongly nonlinear regimes. Philos. Mag. B 78, 235–242 (1998)

    Article  Google Scholar 

  • Vandeparre, H., Piñeirua, M., Brau, F., Roman, B., Bico, J., Gay, C., Bao, W., Lau, C.N., Reis, P.M., Damman, P.: Wrinkling hierarchy in constrained thin sheets from suspended graphene to curtains. Phys. Rev. Lett. 106, 224301 (2001)

    Article  Google Scholar 

  • Zwicknagl, B.: Microstructures in low-hysteresis shape memory alloys: scaling regimes and optimal needle shapes. Arch. Ration. Mech. Anal. 213, 355–421 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank O. G. Schmidt and other members of the Institute for Integrative Nanosciences, IFW Dresden (including P. Cendula, S. Kiravittaya and Y. F. Mei) for interesting discussions about the experiments that were the motivation for this paper. This work was partially supported by the Deutsche Forschungsgemeinschaft through the Sonderforschungsbereich 1060 “The mathematics of emergent effects.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Conti.

Additional information

Communicated by Irene Fonseca.

Appendices

Appendix 1: Derivation of the Model and Rescaling

In this appendix, we derive the energy (1.1). We model the two-layer material (an elastic film on a substrate) described in the introduction with an energy consisting of two parts, an elastic energy for the thin film and a bonding energy for the interaction between the film and the substrate. We take the elastic energy to be the von Kármán energy, which penalises extension (stretching and compression) and bending:

$$\begin{aligned} \begin{aligned} {\hat{I}}_{\mathrm {vK}}&:= \frac{Eh_\mathrm {f}}{2(1-\nu ^2)} \int _{\Omega } \left\{ (1-\nu ) \left| \frac{D {\varvec{u}}+ {D {\varvec{u}}^{\text {T}}}}{2} + \frac{D w \otimes D w}{2} - \varepsilon _* \mathrm {Id}\right| ^2 \right. \\&\left. \quad + \nu \left| \mathrm {tr} \left( \frac{D {\varvec{u}}+ {D {\varvec{u}}^{\text {T}}}}{2} + \frac{D w \otimes D w}{2} - \varepsilon _* \mathrm {Id}\right) \right| ^2 \right\} \, d{\varvec{x}}\\&\phantom {==} + \frac{E h_\mathrm {f}^3}{24(1-\nu ^2)} \int _{\Omega } \left\{ (1-\nu ) | D^2 w |^2 + \nu (\Delta w)^2 \right\} \, d{\varvec{x}}\end{aligned} \end{aligned}$$
(6.43)

where \(\Omega = (0,l_1) \times (0,l_2)\) is the set of material points (xy) of the film, \(h_\text {f}\) is the thickness of the film, E is the Young’s Modulus, and \(\nu \) is the Poisson ratio. The functions \({\varvec{u}}(x,y) = (u(x,y),v(x,y))\) and w(xy) are the in-plane and transversal (vertical) displacements of the film from the isotropically compressed state \(((1-\varepsilon _*)x,(1-\varepsilon _*)y,0)\), where \(0<\varepsilon _*<1\) is the compression ratio. Note that \({\varepsilon }_*=0\) corresponds to no compression and \({\varepsilon }_*=1\) corresponds to total compression. Thus, \((u,v,w)=(0,0,0)\) corresponds to the isotropically compressed state of the film and \((u,v,w)=(\varepsilon _* x,\varepsilon _* y,0)\) corresponds to the relaxed, natural state. The substrate is taken to be at height \(z=0\). Therefore, the transversal displacement w must satisfy the constraint \(w \ge 0\) (since the film cannot go below the substrate). If \(w(x,y)=0\), then the material point (xy) of the film is bonded down to the substrate.

For the energy scaling analysis that we perform, we can set the Poisson ratio \(\nu \) equal to zero without loss of generality since the terms of (6.43) with value of \(\nu \) in the physical range \((-1,1/2)\) can be bound from above and below by those without, as shown in Ben Belgacem et al. (2000, Appendix B).

The interfacial force between the thin film and the substrate is an attractive van der Waals force. We model it in a simple way with a bonding energy \({\hat{I}}_{\text {Bo}}\) that penalises debonding from the substrate:

$$\begin{aligned} {\hat{I}}_{\text {Bo}} := {\gamma }^* | \{ (x,y)\in \Omega \, : \, w(x,y)>0 \} | \end{aligned}$$
(6.44)

where \({\gamma }^*\) is a constant depending on the material properties of the film and the substrate. In more sophisticated models, \(I_{\text {Bo}}\) would also depend on the size of w, i.e. how far the film is from the substrate.

Thus, the total energy we assign to the system is

$$\begin{aligned} {\hat{I}} := {\hat{I}}_{\text {vK}} + {\hat{I}}_{\text {Bo}}. \end{aligned}$$
(6.45)

On the boundary \(\{x=0\}\), we assume that the film is fixed to the substrate and satisfies the clamped boundary conditions

$$\begin{aligned} u(0,y)=0, \quad v(0,y)=0, \quad w(0,y) = 0, \quad D w (0,y) = \mathbf{0}. \end{aligned}$$
(6.46)

(Note that in the experiments of Mei et al. (2007), the film is actually fixed to a buffer layer and satisfies slightly different boundary conditions. This is discussed in Appendix 2) The film is free on the rest of its boundary, \(\{x=l_1\} \cup \{y=0\} \cup \{y=l_2\}\).

Rescaling In order to reduce the number of parameters, we define rescaled variables, denoted with a superscript \(*\), by

$$\begin{aligned} {\varvec{u}}=: 2 \varepsilon _* {\varvec{u}}^*, \qquad w =: (2 \varepsilon _*)^{1/2} \, w^*. \end{aligned}$$
(6.47)

By substituting from Eq. (6.47) into Eq. (6.45), multiplying by \(2 (1-\nu ^2) / (E h_\mathrm {f} \varepsilon _*^2)\), setting \(\nu =0\), and dropping all the superscripts * for convenience, we obtain a new energy \(I^{({\sigma },{{\gamma }})}\):

$$\begin{aligned} \begin{aligned} I^{({\sigma },{{\gamma }})}[{\varvec{u}},w,l_1,l_2]&= \int _{x=0}^{l_1} \! \int _{y=0}^{l_2} |D {\varvec{u}}+ {D {\varvec{u}}^\mathrm {T}} + D w \otimes D w - \mathrm {Id}|^2 \, {\text {d}}x \, {\text {d}}y \\&\phantom {=} + ({\sigma } l_1)^2 \int _{x=0}^{l_1} \! \int _{y=0}^{l_2} | D^2 w|^2 \, {\text {d}}x \, {\text {d}}y \\&\quad + {{\gamma }}| \{ (x,y)\in \Omega \, : \, w(x,y)>0 \} | \end{aligned} \end{aligned}$$
(6.48)

where \({\sigma }\) is the rescaled film thickness and \({{\gamma }}\) is the rescaled bonding energy per unit area:

$$\begin{aligned} {\sigma } := \frac{h_\mathrm {f}}{l_1 (6 \varepsilon _*)^{1/2}}, \qquad {{\gamma }}:=\frac{2 (1-\nu ^2) {{\gamma }}^*}{E h_\mathrm {f} \varepsilon _*^2} = \frac{2 {{\gamma }}^*}{E h_\mathrm {f} \varepsilon _*^2} \quad (\text {since } \nu =0). \end{aligned}$$
(6.49)

Throughout this paper, we refer to \({{\gamma }}\) as the bonding strength, although note that it also depends on the unscaled film thickness \(h_{\text {f}}\). Equation (6.48) is exactly Eq. (1.1) given in the Introduction.

Appendix 2: Upper Bounds for Buffer Layers with Nonzero Thickness

In the experiments of Mei et al. (2007), the film is not clamped to the substrate, but rather to a thin buffer layer, and satisfies clamped boundary conditions of the form

$$\begin{aligned} u(0,y)=0, \quad v(0,y)=0, \quad w(0,y) = h_\mathrm {b}, \quad D w (0,y) = {\mathbf {0}} \end{aligned}$$
(6.50)

where \(h_\mathrm {b}>0\) is the thickness of the buffer layer. In this paper, we considered the unphysical case \(h_\mathrm {b}=0\) in order to simplify the analysis. In this appendix, we show that the upper bounds of Theorem 2.1 also hold when \(h_\mathrm {b}\) is sufficiently small. Recall that \(\Omega = (0,l_1)\times (0,l_2)\). Define

$$\begin{aligned} V_{h_{\text {b}}} \!=\! \left\{ ({\varvec{u}},w) \!\in \!H^1(\Omega ;{\mathbb {R}}^2) \!\times \! H^2(\Omega ) : w\!= \!h_{\text {b}}, \, {\varvec{u}}\!=\! D w ={\mathbf {0}}, \, \text { on } \{ 0 \} \!\times \!(0,l_2), \; w \!\ge \!0 \right\} . \end{aligned}$$

Theorem 6.8

(Upper Bounds for \(h_{\text {b}} >0\)) Let \(0<l_1\le l_2, {\sigma }\in (0,1), {{\gamma }}\ge 0\). Assume that \(h_{\text {b}}\) satisfies

$$\begin{aligned} 0 \le \frac{h_{\text {b}}}{l_1} \le \min \{ {\sigma },{\sigma }^{-1} {{\gamma }}^{-3/2} \}. \end{aligned}$$

Then, there exists admissible displacement fields \(({\varvec{u}},w) \in V_{h_{\text {b}}}\) satisfying the same upper bounds as in Theorem 2.1.

Proof

We construct displacement fields satisfying the required upper bounds by simply appending to the constructions used to prove Theorem 2.1 a boundary layer in which the film is bent upwards from height 0 to height \(h_{\text {b}}\). Let \(\eta >0\) be the boundary layer thickness. For \(x \in [0,\eta ], y \in [0,l_2]\) define

$$\begin{aligned} u = \frac{1}{2} x, \quad v = 0, \quad w = h_{\text {b}} \left[ 1 - \psi \left( \frac{x}{\eta } \right) \right] \end{aligned}$$
(6.51)

where \(\psi \in C^2({\mathbb {R}})\) is a function with \(\psi (t)=0\) for \(t\le 0, \psi (t)=1\) for \(t\ge 1\). For \(x \ge \eta \), define uvw as in the proof of Theorem 2.1 (except that u is replaced with \(u + \eta /2\)). The energy \(E_{\text {BL}}^\eta \) of (uvw) in the boundary layer \((0,\eta )\times (0,l_2)\) satisfies

$$\begin{aligned} E_{\text {BL}}^\eta \le l_2 \eta \left( \frac{h_{\text {b}}^4}{\eta ^4} + ({\sigma } l_1)^2 \frac{h_{\text {b}}^2}{\eta ^4} + 1 + {\gamma } \right) \le l_2 \eta \left( 2({\sigma } l_1)^2 \frac{h_{\text {b}}^2}{\eta ^4} + 1 + {\gamma } \right) \end{aligned}$$
(6.52)

since we assumed that \(h_{\text {b}} \le {\sigma } l_1\). We choose

$$\begin{aligned} \eta = ({\sigma } l_1 h_{\text {b}})^{1/2}\max \{1,{\gamma }\}^{-1/4} \end{aligned}$$
(6.53)

so that

$$\begin{aligned} E_{\text {BL}}^\eta \le l_2 ({\sigma } l_1 h_{\text {b}})^{1/2}\max \{1,{\gamma }\}^{3/4}. \end{aligned}$$
(6.54)

For each regime, it is easy to check that this boundary layer energy is no greater than the energy of the constructions given in Theorem 2.1. \(\square \)

This is the simplest possible modification of the proof of Theorem 2.1, and we do not claim that the bound \(h_{\text {b}}/l_1 < \min \{{\sigma },{\sigma }^{-1} {{\gamma }}^{-3/2}\}\) is sharp.

Appendix 3: Poincaré Constant

In this section, we prove the Poincaré inequality (3.2). It is sufficient to prove the following:

Lemma 6.9

Let \(Q=(0,1) \times (0,1)\) be the unit square and \({\varvec{f}}\in {W^{1,2}}(Q;{\mathbb {R}}^2)\). Let \({\varvec{f}}\) be zero on at least half of the square:

$$\begin{aligned} | \{ {\varvec{x}}\in Q : {\varvec{f}}({\varvec{x}}) = {\mathbf {0}} \}| \ge \frac{1}{2}. \end{aligned}$$

Then,

$$\begin{aligned} \int _Q |{\varvec{f}}|^2 \, d {\varvec{x}}\le \int _Q |D {\varvec{f}}|^2 \, d {\varvec{x}}. \end{aligned}$$

Proof

First we recall the Poincaré inequality in one dimension. Let \({\varvec{g}}\in C^1([0,1]; {\mathbb {R}}^2)\). Write \({\varvec{g}}\) as the Fourier cosine series (the Fourier series of the even extension of g to \([-1,1]\))

$$\begin{aligned} {\varvec{g}}(x) = \frac{{\hat{{\varvec{g}}}}_0}{2} + \sum _{k=1}^\infty {\hat{{\varvec{g}}}}_k \cos (\pi k x), \qquad {\hat{{\varvec{g}}}}_k = 2 \int _0^1 {\varvec{g}}(x) \cos (\pi k x) \, {\text {d}}x. \end{aligned}$$

Let \(\overline{{\varvec{g}}} = {\hat{{\varvec{g}}}}_0/2 = \int _0^1 {\varvec{g}}(x) \, {\text {d}}x\). By Parseval’s Theorem

$$\begin{aligned} \int _0^1 |{\varvec{g}}(x) - \overline{{\varvec{g}}} |^2 \, {\text {d}}x= & {} \frac{1}{2} \sum _{k=1}^\infty |{\hat{{\varvec{g}}}}_k|^2 = \frac{1}{2 \pi ^2} \sum _{k=1}^\infty \frac{1}{k^2} |\pi k {\hat{{\varvec{g}}}}_k|^2 \le \frac{1}{2 \pi ^2} \sum _{k=1}^\infty |\pi k {\hat{{\varvec{g}}}}_k|^2\nonumber \\= & {} \frac{1}{\pi ^2} \int _0^1 |{\varvec{g}}'(x)|^2 \, {\text {d}}x, \end{aligned}$$
(6.55)

which is the Poincaré inequality in one dimension. By density, the same holds for \({\varvec{g}}\in W^{1,2}((0,1);{\mathbb {R}}^2)\).

We now turn to the two-dimensional case. By Fubini’s theorem, for almost every x one has \({\varvec{f}}(x,\cdot )\in W^{1,2}((0,1);{\mathbb {R}}^2)\). Let

$$\begin{aligned} {\varvec{a}}(x) = \int _0^1 {\varvec{f}}(x,y) \, {\text {d}}y, \qquad \overline{{\varvec{a}}} = \int _0^1 {\varvec{a}}(x) \, {\text {d}}x = \int _Q {\varvec{f}}(x,y) \, {\text {d}}x{\text {d}}y. \end{aligned}$$

By equation (6.55)

$$\begin{aligned} \int _0^1 |{\varvec{a}}(x) - \overline{{\varvec{a}}}|^2 \, {\text {d}}x\le & {} \frac{1}{\pi ^2} \int _0^1 |{\varvec{a}}'(x)|^2 \, {\text {d}}x \le \frac{1}{\pi ^2} \int _0^1 \int _0^1 |{\varvec{f}}_x |^2 \, {\text {d}}x{\text {d}}y,\\ \int _0^1 |{\varvec{f}}(x,y) - {\varvec{a}}(x)|^2 \, {\text {d}}y\le & {} \frac{1}{\pi ^2} \int _0^1 |{\varvec{f}}_y|^2 \, {\text {d}}y. \end{aligned}$$

Therefore,

$$\begin{aligned} \int _Q | {\varvec{f}}- \overline{{\varvec{a}}} |^2 \, {\text {d}}x{\text {d}}y\le & {} 2 \left( \int _Q | {\varvec{f}}- {\varvec{a}}|^2 \, {\text {d}}x{\text {d}}y + \int _Q | {\varvec{a}}- \overline{{\varvec{a}}} |^2 \, {\text {d}}x{\text {d}}y \right) \nonumber \\\le & {} \frac{2}{\pi ^2} \int _Q |D {\varvec{f}}|^2 \, {\text {d}}x{\text {d}}y. \end{aligned}$$
(6.56)

Let \(U = \{ {\varvec{x}}\in Q : {\varvec{f}}({\varvec{x}}) = {\mathbf {0}} \}\). We have

$$\begin{aligned} \frac{1}{2} |\overline{{\varvec{a}}}|^2 \le |U| |\overline{{\varvec{a}}}|^2 = \int _U |{\varvec{f}}- \overline{{\varvec{a}}}|^2 \, {\text {d}}x \le \frac{2}{\pi ^2} \int _Q |D {\varvec{f}}|^2 \, {\text {d}}x{\text {d}}y. \end{aligned}$$
(6.57)

Observe that

$$\begin{aligned} \int _Q |{\varvec{f}}- \overline{{\varvec{a}}}|^2 \, d {\varvec{x}}= \int _Q |{\varvec{f}}|^2 \, d{\varvec{x}}- |\overline{{\varvec{a}}}|^2. \end{aligned}$$

By combining this with estimates (6.56) and (6.57), we obtain

$$\begin{aligned} \int _Q |{\varvec{f}}|^2 \, d {\varvec{x}}= \int _Q |{\varvec{f}}- \overline{{\varvec{a}}}|^2 \, d {\varvec{x}}+ |\overline{{\varvec{a}}}|^2 \le \frac{6}{\pi ^2} \int _Q |D {\varvec{f}}|^2 \, d {\varvec{x}}\end{aligned}$$

which, since \(6<\pi ^2\), completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourne, D.P., Conti, S. & Müller, S. Energy Bounds for a Compressed Elastic Film on a Substrate. J Nonlinear Sci 27, 453–494 (2017). https://doi.org/10.1007/s00332-016-9339-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-016-9339-0

Keywords

Mathematics Subject Classification

Navigation