Skip to main content
Log in

On Orbital Instability of Spectrally Stable Vortices of the NLS in the Plane

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We explain how spectrally stable vortices of the nonlinear Schrödinger equation in the plane can be orbitally unstable. This relates to the nonlinear Fermi golden rule, a mechanism which exploits the nonlinear interaction between discrete and continuous modes of the NLS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adami, R., Noja, D., Ortoleva, C.: Asymptotic stability for standing waves of a NLS equation with concentrated nonlinearity in dimension three. II (2015). arXiv:1507.04626

  • Asad, R., Simpson, G.: Embedded eigenvalues and the nonlinear Schrödinger equation. J. Math. Phys. 52(3), 033511, 26 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Bambusi, D., Cuccagna, S.: On dispersion of small energy solutions of the nonlinear Klein Gordon equation with a potential. Am Math J 133, 1421–1468 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Bambusi, D., Maspero, A.: Freezing of energy of a soliton in an external potential. Commun. Math. Phys 344, 155–191 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  • Bellazzini, J., Benci, V., Bonanno, C., Sinibaldi, E.: On the existence of hylomorphic vortices in the nonlinear Klein–Gordon equation. Dyna. P. D. E. 10, 1–24 (2013)

    MATH  MathSciNet  Google Scholar 

  • Béthuel, F., Gravejat, P., Smets, D.: Asymptotic stability in the energy space for dark solitons of the Gross-Pitaevskii equation. Ann. Sci. Éc. Norm. Supér. (4) 48, 1327–1381 (2015)

    MATH  MathSciNet  Google Scholar 

  • Buslaev, V., Perelman, G.: On the stability of solitary waves for nonlinear Schrödinger equations. Nonlinear evolution equations. In: Uraltseva, N.N. (ed.) Translations Ser. 2, 164, Amer. Math. Soc., pp. 75–98. American Mathematical Society, Providence (1995)

  • Cazenave, T., Lions, P.L.: Orbital stability of standing waves for nonlinear Schrödinger equations. Commun. Math. Phys. 85, 549–561 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  • Comech, A., Pelinovsky, D.: Purely nonlinear instability of standing waves with minimal energy. Commun. Pure Appl. Math. 56(11), 1565–1607 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Cote, R., Munoz, C., Pilod, D., Simpson, G.: Asymptotic stability of high-dimensional Zakharov–Kuznetsov solitons. Arch. Ration. Mech. Anal. 220, 639–710 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  • Crasovan, L.-C., Malomed, B.A., Mihalache, D.: Spinning solitons in cubic–quintic nonlinear media. Pramana J. Phys. 57(5 & 6), 1041–1059 (2001)

    Article  Google Scholar 

  • Cuccagna, S., Pelinovsky, D., Vougalter, V.: Spectra of positive and negative energies in the linearization of the NLS problem. Commun. Pure Appl. Math. 58, 1–29 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Cuccagna, S.: On instability of excited states of the nonlinear Schrödinger equation. Phys. D 238, 38–54 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Cuccagna, S.: The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic stability of its ground states. Commun. Math. Phys. 305, 279–331 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Cuccagna, S.: On the Darboux and Birkhoff steps in the asymptotic stability of solitons. Rend. Istit. Mat. Univ. Trieste 44, 197–257 (2012)

    MATH  MathSciNet  Google Scholar 

  • Cuccagna, S.: On asymptotic stability of moving ground states of the nonlinear Schrödinger equation. Trans. Am. Math. Soc. 366, 2827–2888 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  • Cuccagna, S., Maeda, M.: On weak interaction between a ground state and a non-trapping potential. J. Differ. Equ. 256, 1395–1466 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  • Cuccagna, S., Maeda, M.: On weak interaction between a ground state and a trapping potential. J. Discrete Contin. Dyn. Syst. A 35(8), 3343–3376 (2015a)

    Article  MATH  MathSciNet  Google Scholar 

  • Cuccagna, S., Maeda, M.: On small energy stabilization in the NLS with a trapping potential. Anal. PDE 8, 1289–1349 (2015b)

    Article  MATH  MathSciNet  Google Scholar 

  • Cuccagna, S., Pelinovsky, D.: Bifurcations from the endpoints of the essential spectrum in the linearized nonlinear Schrödinger problem. J. Math. Phys. 46(5), 053520, 15 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Cuccagna, S., Tarulli, M.: On asymptotic stability in energy space of ground states of NLS in 2D. Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 1361–1386 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Cuevas Maraver, J., Kevrekidis, P.G., Pelinovsky, D.E.: Nonlinear instabilities of multi-site breathers in Klein Gordon lattices (2015). arXiv:1505.02815

  • Friedlander, F.G.: The Wave Equation on a Curved Space–Time. Cambridge University Press, Cambridge (1975)

    MATH  Google Scholar 

  • Gang, Z., Sigal, I.M.: Asymptotic stability of nonlinear Schrödinger equations with potential. Rev. Math. Phys. 17, 1143–1207 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Gang, Z., Sigal, I.M.: Relaxation of solitons in nonlinear Schrödinger equations with potential. Adv. Math. 216, 443–490 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Gang, Z., Weinstein, M.I.: Dynamics of nonlinear Schrödinger/Gross–Pitaeskii equations; mass transfer in systems with solitons and degenerate neutral modes. Anal. PDE 1, 267–322 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Gang, Z., Weinstein, M.I.: Equipartition of energy in nonlinear Schrödinger/Gross–Pitaeskii equations. AMRX 2, 123–181 (2011)

    MATH  MathSciNet  Google Scholar 

  • Georgiev, V., Ohta, M.: Nonlinear instability of linearly unstable standing waves for nonlinear Schrödinger equations. J. Math. Soc. Jpn. 64, 533–548 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Gravejat, P., Smets, D.: Asymptotic stability of the black soliton for the Gross–Pitaevskii equation. Proc. Lond. Math. Soc. 111, 305–353 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  • Grillakis, M., Shatah, J., Strauss, W.: Stability of solitary waves in the presence of symmetries, I. J. Funct. Anal. 74, 160–197 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  • Grillakis, M.: Linearized instability for nonlinear Schrödinger and Klein Gordon equations. Commun. Pure Appl. Math. 41, 747–774 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  • Grillakis, M., Shatah, J., Strauss, W.: Stability of solitary waves in the presence of symmetries, II. J. Funct. Anal. 94, 308–348 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  • Gustafson, S., Phan, T.V.: Stable directions for degenerate excited states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 43, 1716–1758 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Hofer, H., Zehnder, E.: Symplectic Invariants and Hamiltonian Dynamics. Birkhäuser, Basel (1994)

    Book  MATH  Google Scholar 

  • Howland, J.: Poiseaux series for resonances at an embedded eigenvalue. Pac. J. Math. 55, 157–176 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  • Iaia, J., Warchall, H.: Nonradial solutions of a semilinear elliptic equation in two dimensions. J. Differ. Equ. 119, 533–558 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  • Iaia, J., Warchall, H.: Encapsulated-vortex solutions to equivariant wave equations: existence. SIAM J. Math. Anal. 30, 118–139 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Jones, C.K.R.T.: An instability mechanism for radially symmetric standing waves of nonlinear Schrödinger equations. J. Differ. Equ. 71, 34–62 (1988)

    Article  MATH  Google Scholar 

  • Jones, C.K.R.T.: Instability of standing waves for nonlinear nonlinear Schrödinger-type equations. Ergod. Theory Dyn. Syst. 8, 119–138 (1988)

    Article  MATH  Google Scholar 

  • Kato, T.: Wave operators and similarity for some non-selfadjoint operators. Math. Ann. 162, 258–269 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  • Kevrekidis, P.G., Pelinovsky, D.E., Saxena, A.: When linear stability does not exclude nonlinear instability. Phys. Rev. Lett. 114, 214101 (2015). (6 pages)

    Article  Google Scholar 

  • Kollár, R., Pego, R.: Spectral stability of vortices in two-dimensional Bose–Einstein condensates via the Evans function and Krein signature. AMRX 1–46 (2012)

  • Kollár, R., Miller, P.D.: Graphical Krein signature theory and Evans–Krein functions. SIAM Rev. 56, 73–123 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  • Komech, A., Kopylova, E., Stuart, D.: On asymptotic stability of solitons in a nonlinear Schrödinger equation. Commun. Pure Appl. Anal. 11, 1063–1079 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Kowalczyk, M., Martel, Y., Munoz, C.: Kink dynamics in the \(\varphi ^4\) model: asymptotic stability for odd perturbations in the energy space (2015a). arXiv:1506.07420

  • Kowalczyk, M., Martel, Y., Munoz, C.: Kink dynamics in the \(f^4\) model: asymptotic stability for odd perturbations in the energy space (2015b). arXiv:1506.07420

  • Maeda, M.: Stability of bound states of Hamiltonian PDEs in the degenerate cases. J. Funct. Anal. 263(2), 511–528 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Maeda, M.: Existence and asymptotic stability of quasi-periodic solution of discrete NLS with potential in \(\mathbb{Z} \) (2014). arXiv:1412.3213

  • Maeda, M., Masaki, S.: An example of stable excited state on nonlinear Schrödinger equation with nonlocal nonlinearity. Differ. Integral Equ. 26, 731–756 (2013)

    MATH  MathSciNet  Google Scholar 

  • Martel, Y.: Linear problems related to asymptotic stability of solitons of the generalized KdV equations. SIAM J. Math. Anal. 38, 759–781 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Martel, Y., Merle, F.: Asymptotic stability of solitons of the gKdV equations with general nonlinearity. Math. Ann. 341, 391–427 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Marzuola, J.L., Simpson, G.: Spectral analysis for matrix Hamiltonian operators. Nonlinearity 24(2), 389–429 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Mihalache, D., Mazilu, D., Crasovan, L.-C., Towers, I., Buryak, A., Malomed, B.A., Torner, L., Torres, J.P., Lederer, F.: Phys. Rev. Lett. 88(7), 073902 (2002). 4 pages

    Article  Google Scholar 

  • Mizumachi, T.: Instability of bound states for 2D nonlinear Schrödinger equations. Discrete Contin. Dyn. Syst. 13, 413–428 (2005a)

    Article  MATH  MathSciNet  Google Scholar 

  • Mizumachi, T.: Vortex solitons for 2D focusing nonlinear Schrödinger equations. Differ. Integral Equ. 18, 431–450 (2005b)

    MATH  MathSciNet  Google Scholar 

  • Mizumachi, T.: A remark on linearly unstable standing wave solutions to NLS. Nonlinear Anal. 64, 657–676 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Mizumachi, T.: Instability of vortex solitons for 2D focusing NLS. Adv. Differ. Equ. 3, 241–264 (2007)

    MATH  MathSciNet  Google Scholar 

  • Nakanishi, K., Phan, T.V., Tsai, T.P.: Small solutions of nonlinear Schrödinger equations near first excited states. J. Funct. Anal. 263, 703–781 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Ohta, M.: Instability of bound states for abstract nonlinear Schrödinger equations. J. Funct. Anal. 261(1), 90–110 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Olver, P.J.: Applications of Lie Groups to Differential Equations Graduate Texts in Mathematics, vol. 107. Springer, New York (1993)

    Book  Google Scholar 

  • Pego, R.L., Warchall, H.A.: Spectrally stable encapsulated vortices for nonlinear Schrödinger equations. J. Nonlinear Sci. 12, 347–394 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Pego, R.L., Weinstein, M.I.: Asymptotic stability of solitary waves. Commun. Math. Phys. 164, 305–349 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  • Quiroga-Teixeiro, M., Michinel, H.: A stable azimuthal stationary state in quintic nonlinear media. J. Opt. Soc. Am. B 14, 2004–2009 (1997)

    Article  Google Scholar 

  • Rauch, J.: Perturbation theory for eigenvalues and resonances of Schrödinger Hamiltonians. J. Funct. Anal. 35, 304–315 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  • Sigal, I.M.: Nonlinear wave and Schrödinger equations. I. Instability of periodic and quasi-periodic solutions. Commun. Math. Phys. 153, 297–320 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  • Soffer, A., Weinstein, M.I.: Multichannel nonlinear scattering for nonintegrable equations. Commun. Math. Phys. 133, 116–146 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  • Soffer, A., Weinstein, M.I.: Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations. Invent. Math. 136, 9–74 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Soffer, A., Weinstein, M.I.: Selection of the ground state for nonlinear Schrödinger equations. Rev. Math. Phys. 16, 977–1071 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Towers, I., Buryak, A.V., Sammut, R.A., Malomed, B.A., Crasovan, L.-C., Mihalache, D.: Stability of spinning ring solitons of the cubic–quintic nonlinear Schrödinger equation. Phys. Lett. A 288, 292–298 (2001)

    Article  MATH  Google Scholar 

  • Tsai, T.P.: Asymptotic dynamics of nonlinear Schrödinger equations with many bound states. J. Differ. Equ. 192, 225–282 (2003)

    Article  MATH  Google Scholar 

  • Tsai, T.P., Yau, H.T.: Asymptotic dynamics of nonlinear Schrödinger equations: resonance dominated and radiation dominated solutions. Commun. Pure Appl. Math. 55, 153–216 (2002a)

    Article  MATH  MathSciNet  Google Scholar 

  • Tsai, T.P., Yau, H.T.: Relaxation of excited states in nonlinear Schrödinger equations. Int. Math. Res. Not. 31, 1629–1673 (2002b)

    Article  MATH  MathSciNet  Google Scholar 

  • Tsai, T.P., Yau, H.T.: Classification of asymptotic profiles for nonlinear Schrödinger equations with small initial data. Adv. Theor. Math. Phys. 6, 107–139 (2002c)

    Article  MATH  MathSciNet  Google Scholar 

  • Tsai, T.P., Yau, H.T.: Stable directions for excited states of nonlinear Schrödinger equations. Commun. PDE 27, 2363–2402 (2002d)

    Article  MATH  MathSciNet  Google Scholar 

  • Vougalter, V.: On threshold eigenvalues and resonances for the linearized NLS equation. Math. Model. Nat. Phenom. 5(4), 448–469 (2010a)

    Article  MATH  MathSciNet  Google Scholar 

  • Vougalter, V.: On the negative index theorem for the linearized non-linear Schrödinger problem. Can. Math. Bull. 53, 737–745 (2010b)

    Article  MATH  MathSciNet  Google Scholar 

  • Weinstein, M.I.: Modulation stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16, 472–491 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  • Weinstein, M.I.: Lyapunov stability of ground states of nonlinear dispersive equations. Commun. Pure Appl. Math. 39, 51–68 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  • Weinstein, M.I.: Localized states and dynamics in the nonlinear Schroedinger/Gross–Pitaevskii equations. In: Jones, C.K.R.T., Sandstede, B., Young, L.-S. (eds.) Dynamics of Partial Differential Equations, Frontiers in Applied Dynamics: Reviews and Tutorials, vol 3, pp. 41–79. Springer, Berlin (2015)

Download references

Acknowledgments

S.C. was partially funded by grants FIRB 2012 (Dinamiche Dispersive) from the Italian Government, FRA 2013 and FRA 2015 from the University of Trieste. M.M. was supported by the Japan Society for the Promotion of Science (JSPS) with the Grant-in-Aid for Young Scientists (B) 15K17568.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scipio Cuccagna.

Additional information

Communicated by George Haller.

Appendix: Proof of Lemma 6.1

Appendix: Proof of Lemma 6.1

First of all, it is equivalent to consider Eq. 6.2 for h. Let \( X_c = M ^{-1}L^2_c(\omega _1)\) and by an abuse of notation let us set \(\widetilde{P}_c = M ^{-1}P_c(\omega _1) M\), where \(P_c\) is introduced under Lemma 2.3. Set also \(\mathcal {K}= \mathcal {K}_{\omega _1}\) The following three lemmas are Lemma 3.1–3.3 in Cuccagna and Tarulli (2009).

Lemma 8.1

(Strichartz estimate) There exists a positive number C such that for any \(k\in [0,2]\):

  1. (a)

    for any \(h= \widetilde{P}_c h\) and any admissible all pair (pq),

    $$\begin{aligned} \Vert e^{-\mathrm{i}t\mathcal {K} } h\Vert _{L_t^pW_x^{k,q } }\le C\Vert h\Vert _{H^k}; \end{aligned}$$
  2. (b)

    for any \(g(t,x)\in S({\mathbb {R}}^2)\) and any couple of admissible pairs \((p_{1},q_{1})\;(p_{2},q_{2})\) we have

    $$\begin{aligned} \left\| \int _{0}^te^{-\mathrm{i}(t-s)\mathcal {K} } \widetilde{P}_c g(s,\cdot )ds \right\| _{L_t^{p_1}W_x^{k,q_1 } } \le C\Vert g\Vert _{L_t^{p_2'}W_x^{k,q_2' } }. \end{aligned}$$

Lemma 8.2

Let \(s>1\). \(\exists \,C=C \) such that:

  1. (a)

    for any \(f\in S({\mathbb {R}}^2 )\),

    $$\begin{aligned} \Vert e^{-\mathrm{i}t \mathcal {K}}\widetilde{P}_c f\Vert _{ L^2_tL_x^{2,-s}} \le C\Vert f\Vert _{L^2} ; \end{aligned}$$
  2. (b)

    for any \(g(t,x)\in {S}({\mathbb {R}}^2)\)

    $$\begin{aligned} \left\| \int _{{\mathbb {R}}} e^{\mathrm{i}t\mathcal {K}}\widetilde{P}_c g(t,\cdot )dt\right\| _{L^2_x} \le C\Vert g\Vert _{ L_t^2L_x^{2,s}}. \end{aligned}$$

Lemma 8.3

Let \(s>1\). \(\exists \;C \) such that \(\forall \;g(t,x)\in {S}({\mathbb {R}}^2)\) and \(t\in {\mathbb {R}}\):

$$\begin{aligned} \left\| \int _0^t e^{-\mathrm{i}(t-s)\mathcal {K}}\widetilde{P}_c g(s,\cdot )ds\right\| _{ L^2_tL_x^{2,-s}} \le C\Vert g\Vert _{ L^2_tL_x^{2, s}} . \end{aligned}$$

Lemma 8.4

Let (pq) be an admissible pair and let \(s>1\). \(\exists \) a constant \(C>0\) such that \(\forall \,g(t,x)\in {S}({\mathbb {R}}^2)\) and \(t\in {\mathbb {R}}\):

$$\begin{aligned} \left\| \int _0^t e^{-\mathrm{i}(t-s)\mathcal {K}}\widetilde{P}_cg(s,\cdot )ds \right\| _{L_t^pL_x^q} \le C\Vert g\Vert _{ L^2_tL_x^{2, s}}. \end{aligned}$$

The following is Proposition 1.2 in Cuccagna and Tarulli (2009).

Lemma 8.5

The following limits are well-defined isomorphism, inverse of each other:

$$\begin{aligned} \begin{aligned}&W u= \lim _{t\rightarrow +\infty } e^{ \mathrm{i}t\mathcal {K} } e^{ \mathrm{i}t \sigma _3(\Delta -\omega _1) }u \text { for any }u\in L^2 \\&Z u= \lim _{t\rightarrow +\infty } e^{ \mathrm{i}t(-\Delta +\omega _1) } e^{ -\mathrm{i}t \mathcal {K} } \text { for any }u=\widetilde{P}_cu. \end{aligned} \end{aligned}$$

For any \(p\in (1,\infty )\) and any k the restrictions of W and Z to \(L^2\cap W^{k,p}\) extend into operators such that for a constant C we have

$$\begin{aligned} \Vert W\Vert _{ W^{k,p}({\mathbb {R}}^2), W^{k,p}_c}+\Vert Z\Vert _{ W^{k,p}_c, W^{k,p}({\mathbb {R}}^2) }<C \end{aligned}$$

with \(W^{k,p} _c \) the closure in \(W^{k,p} ({\mathbb {R}}^2)\) of \( W^{k,p}({\mathbb {R}}^2)\cap \widetilde{P}_c L^2 _c \).

The following is Cuccagna and Tarulli (2009, Lemma 3.5).

Lemma 8.6

Consider the diagonal matrices \( E_+=\text {diag}(1 , 0)\,E_-=\text {diag}(0 , 1).\) Set \(P_\pm =Z E_\pm W \) with Z and W the wave operators associated with \( \mathcal {K} \). Then we have for \(u =\widetilde{P}_cu\)

$$\begin{aligned} \begin{aligned}&P_+ u =\lim _{\epsilon \rightarrow 0^+} \frac{1}{2\pi \mathrm{i}} \lim _{M \rightarrow +\infty } \int _\omega ^M \left[ R_{ \mathcal {K} }(\lambda +\mathrm{i}\epsilon )- R_{\mathcal {K} }(\lambda -\mathrm{i}\epsilon ) \right] ud\lambda \\&P_- u =\lim _{\epsilon \rightarrow 0^+} \frac{1}{2\pi \mathrm{i}} \lim _{M \rightarrow +\infty } \int _{-M }^{-\omega } \left[ R_{\mathcal {K} }(\lambda +\mathrm{i}\epsilon )- R_{\mathcal {K} }(\lambda -\mathrm{i}\epsilon ) \right] ud\lambda \end{aligned} \end{aligned}$$

and for any \(s_1\) and \(s_2\) and for \(C=C (s_1,s_2 )\) we have

$$\begin{aligned} \Vert (P_+ -P_- -\widetilde{P}_c \sigma _3) f\Vert _{L^{2,s_1} }\le C \Vert f\Vert _{L^{2,s_2} }. \end{aligned}$$

Now we look at the term \(\mathbf {E}\) in (6.2).

Lemma 8.7

For any preassigned s and for \(\epsilon _0 >0\) small enough we have

$$\begin{aligned} \begin{aligned}&\mathbf {E} = R_1+R_2 \text { with } \Vert R_1 \Vert _{L^1_t([0,T],H^{ 1 }_x)} +\Vert R_2 \Vert _{L^{2 }_t([0,T],H^{ 1 , s}_x)}\le C( s,C_0 ) \epsilon ^2 . \end{aligned} \end{aligned}$$
(8.1)

Furthermore for a fixed constant c we have

$$\begin{aligned} \begin{aligned}&\Vert A \Vert _{L^\infty ( (0,T), {\mathbb {R}})}\le c C_0^2 \epsilon ^2. \end{aligned} \end{aligned}$$
(8.2)

Proof

The estimate on \(A=A'+{A} ^{\prime \prime } \) follows from the definitions of \(A'\) in (5.2) and of \(A^{\prime \prime } \) in (5.3).

\(\mathbf {E}\) is a sum of various terms. For example we have

$$\begin{aligned} \begin{aligned}&\Vert z^\mu \overline{z}^\nu M^{-1} [{G}_{\mu \nu } (Q,0) - {G}_{\mu \nu } (Q,Q(f)) ] \Vert _{L^{2 }_t([0,T],H^{ 1 , s}_x)} \\&\quad \le \Vert z^\mu \overline{z}^\nu \Vert _{L^{2 }_t [0,T] } \Vert {G}_{\mu \nu } (Q,0) - {G}_{\mu \nu } (Q,Q(f)) \Vert _{L^{\infty }_t([0,T],H^{ 1 , s}_x)} \lesssim C_0^3 \epsilon ^3. \end{aligned} \end{aligned}$$

So this term can be absorbed in \(R_2\). Another example is \(\beta (|f|^2)f =\chi _{|f|\le 1}\beta (|f|^2)f +\chi _{|f|\ge 1}\beta (|f|^2)f \). The first term can be bounded, schematically, by

$$\begin{aligned} \begin{aligned}&\Vert |f |^2 f \Vert _{ L^{1 }_t([0,T],H^{ 1 }_x) } \lesssim \left\| \Vert f \Vert _{W^{1,6}_x} \Vert f \Vert ^2_{L^{ 6}_x} \right\| _{L^1_t[0,T] } \le \Vert f \Vert _{L^3_t([0,T],W^{1,6}_x)}^3 \ \lesssim C_0^3 \epsilon ^3 \end{aligned} \end{aligned}$$
(8.3)

while the 2nd term can be bounded by

$$\begin{aligned} \begin{aligned}&\Vert f ^{{L}} \Vert _{ L_t^1H^1_x } \lesssim \left\| \Vert f \Vert _{W^{1,2{L}}_x} \Vert f \Vert ^{{L}-1}_{L^{ 2{L}}_x} \right\| _{L^1_t } \le \Vert f \Vert _{L^{\frac{ 2{L}}{{L}-1}}_tW^{1,2{L}}_x} \Vert f \Vert ^{{L}-1}_{L^{ 2{L} \frac{{L}-1}{{L}+1} }_tW^{1,2L}_x} \lesssim C_0^L\epsilon ^{L}, \end{aligned} \end{aligned}$$
(8.4)

where in the last step we use \( \Vert f \Vert _{L^{ 2{L} \frac{{L}-1}{{L}+1} }_tW^{1,2{L}}_x}\lesssim \Vert f \Vert ^{\alpha }_{L^{\frac{ 2{L}}{{L}-1}}_tL^{ 2{L}}_x} \Vert f \Vert _{ L_{t }^\infty H^1_x } ^{1-\alpha }\) for some \(0<\alpha <1\) by \({L}>3\) (which we can always assume), interpolation and Sobolev embedding.

Notice that by \(\nabla _{f} {\mathcal {R}}^{1,2}_{k,m}(Q ,\varrho , f) _{|\varrho =Q (f)}= S^{1,1}_{k,m-1}(Q ,Q (f), f)\) we have by (3.16)

$$\begin{aligned} \begin{aligned}&\Vert \nabla _{f} {\mathcal {R}}^{1,2}_{k,m}(Q ,\varrho , f) _{|\varrho =Q (f)} \Vert _{ L_t^2H ^{1,s}_x } \le \Vert \Vert f \Vert _{L^{2,-\sigma }_x} \Vert _{ L_t^2 } (\Vert f\Vert _{L^2}+|z | +|Q (f) |) \Vert _{ L_t^2 }\\ {}&\le \Vert f \Vert _{L_t^2L^{2,-\sigma }_x} (\Vert z \Vert _{ L_t^\infty } + \Vert f \Vert _{ L_t^\infty }L^2) \le 2 C_0 ^2 \epsilon ^2. \end{aligned} \end{aligned}$$

Consider for example the contribution of

$$\begin{aligned} \begin{aligned}&\nabla _{f} \int _{\mathbb {R}^2} B_L (x, f(x), Q , z,\varrho , f ) f^{ L}(x) \hbox {d}x _{|\varrho =Q(f)}\\&\quad \sim B_L (x, f(x), Q , z,Q(f) , f ) f^{ L-1}(x)\\&\quad + \int _{\mathbb {R}^2} \partial _{6} B_L (x, f(x), Q , z,Q(f) , f ) f^{ L}(x) \hbox {d}x \\&\quad + \partial _{2} B_L (x, f(x), Q , z,Q(f) , f ) f^{ L}(x) . \end{aligned} \end{aligned}$$
(8.5)

The last term can be treated like \( f^{ L}\) above, since \(\Vert B_L (x, f(x), Q , z,Q(f) , f )\Vert _{ L _{tx} ^\infty } \le C\) by (3.20). We can use (8.3) or (8.4) for the first term of the r.h.s., since \(L-1\ge 3\). Finally let us consider the 2nd term in the r.h.s. If we take \(g\in L ^{\infty }_tH ^{-1}_x\) we need to bound

$$\begin{aligned} \begin{aligned}&\int _{0}^{T} \hbox {d}t \int _{\mathbb {R}^2} | \langle g, \partial _{6} B_L (x , f(x ), Q , z,Q(f) , f )\rangle _{L_{x'}^2} f^{ L}(x) \hbox {d}x | \\&\quad \le \int _{0}^{T} dt \Vert | \langle g, \partial _{6} B_L (x , f(x ), Q , z,Q(f) , f )\rangle _{L_{x'}^2}\Vert _{L^2_x} \Vert f^{ L}\Vert _{L^2_x}\\&\quad \le \Vert | \langle g, \partial _{6} B_L (x , f(x ), Q , z,Q(f) , f )\rangle _{L_{x'}^2}\Vert _{L^\infty _tL^2_x}\Vert f^{ L}\Vert _{L^1 _tL^2_x} \end{aligned} \end{aligned}$$

and we bound the last factor by (8.4). We have for fixed t

$$\begin{aligned} \begin{aligned}&\Vert | \langle g, \partial _{6} B_L (x , f(x ), Q , z,Q(f) , f )\rangle _{L_{x'}^2}\Vert _{ L^2_x}\le \Vert \partial _{6} B_L \Vert _{B(\Sigma _{-k},\Sigma _k) } \Vert g \Vert _{\Sigma _{-k}} \end{aligned} \end{aligned}$$

so that by (3.20), or by its analogue for the \(B_L\) in Lemma 4.1, we have that the last quantity is bounded by \(C\Vert g \Vert _{H^ {-1}}\). This yields a bound \(\Vert \text {first term 2nd line (A.5)}\Vert _{L^1_tL^2_x}\lesssim C_0^L \epsilon ^L\).

Proof of Lemma 6.1

We rewrite (6.2) as

$$\begin{aligned} \mathrm{i}\dot{h}= & {} [\mathcal {K} h + A (P_+ -P_-) ] h+ A [\widetilde{P}_c \sigma _3-P_+ +P_-] \sigma _3h\\&+ \sum _{\mathbf {e} \cdot (\mu -\nu )\in \sigma _e(\mathcal {L} _{\omega _1 })} z^\mu \overline{z}^\nu \mathbf {G}_{\mu \nu } + \widetilde{P}_c\mathbf {E} . \end{aligned}$$

Then we have

$$\begin{aligned} \begin{aligned} h (t) =&\, \mathcal {U}(t,0) e^{\mathrm{i}t\mathcal {K}}h(0) +\int _0^t\mathcal {U}(t,s)e^{\mathrm{i}(t-s)\mathcal {K}}\left[ A [\widetilde{P}_c \sigma _3-P_+ +P_-] \sigma _3h \right. \\&\left. + \sum _{\mathbf {e} \cdot (\mu -\nu )\in \sigma _e(\mathcal {L} _{\omega _1 })} z^\mu \overline{z}^\nu \mathbf {G}_{\mu \nu } + \widetilde{P}_c\mathbf {E} \right] ds, \end{aligned} \end{aligned}$$
(8.6)

where the following operator commutes with \(\mathcal {K}\):

$$\begin{aligned} \mathcal {U}(t,s)= ^{\mathrm{i}\int _s^t A(s') ds'(P_+ -P_-) }. \end{aligned}$$

Then

$$\begin{aligned} \begin{aligned} \Vert h \Vert _{L^p_t W^{ 1 ,q}_x \cap L^2_t H^{ 1 ,-s}_x }&\lesssim \Vert h (0)\Vert _{H^1} +\sum _{\mu \nu }\Vert z^\mu \overline{z}^\nu \Vert _{L^2_t }\Vert \mathbf {G}_{\mu \nu }\Vert _{L^\infty _t H^{ 1 , s}_x}\\&\quad + \Vert A \Vert _{L^\infty _t } \Vert h \Vert _{ L^2_t H^{ 1 ,-s}_x } + \Vert R_1 \Vert _{L^1_t H^{ 1 }_x } +\Vert R_2 \Vert _{L^{2 }_t H^{ 1 , s}_x } . \end{aligned} \end{aligned}$$

The terms on the second line are \(O(\epsilon ^2)\), and the r.h.s. is bounded by the r.h.s. of (6.1), proving Lemma 6.1. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuccagna, S., Maeda, M. On Orbital Instability of Spectrally Stable Vortices of the NLS in the Plane. J Nonlinear Sci 26, 1851–1894 (2016). https://doi.org/10.1007/s00332-016-9322-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-016-9322-9

Keywords

Mathematics Subject Classification

Navigation