Skip to main content
Log in

Stability and Bifurcation in a Delayed Reaction–Diffusion Equation with Dirichlet Boundary Condition

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this paper, we study the dynamics of a diffusive equation with time delay subject to Dirichlet boundary condition in a bounded domain. The existence of spatially nonhomogeneous steady-state solution is investigated by applying Lyapunov–Schmidt reduction. The existence of Hopf bifurcation at the spatially nonhomogeneous steady-state solution is derived by analyzing the distribution of the eigenvalues. The direction of Hopf bifurcation and stability of the bifurcating periodic solution are also investigated by means of normal form theory and center manifold reduction. Moreover, we illustrate our general results by applications to the Nicholson’s blowflies models with one- dimensional spatial domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Busenberg, S., Huang, W.Z.: Stability and Hopf bifurcation for a population delay model with diffusion effects. J. Differ. Equ. 124, 80–107 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Chafee, N., Infante, E.F.: A bifurcation problem for a nonlinear partial differential equation of parabolic type. Appl. Anal. 4(1), 17–37 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, S.S., Shi, J.P.: Stability and Hopf bifurcation in a diffusive logistic population model with nonlocal delay effect. J. Differ. Equ. 253, 3440–3470 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Davidson, F., Dodds, N.: Spectral properties of non-local differential operators. Appl. Anal. 85, 717–734 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Deng, Y.B., Peng, S.J., Yan, S.S.: Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth. J. Differ. Equ. 258, 115–147 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Faria, T.: Normal forms for semilinear functional differential equations in Banach spaces and applications. Discrete Contin. Dyn. Syst. 7, 155–176 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Faria, T.: Stability of periodic solutions arising from Hopf bifurcation for a reaction–diffusion equation with time delay. In: Huang, W.Z. (ed.) Fields Institute Communications, pp. 125–141. American Mathematical Society, Providence (2002)

    Google Scholar 

  • Faria, T., Huang, W.Z., Wu, J.H.: Smoothness of center manifolds for maps and formal adjoints for semilinear FDEs in general Banach spaces. SIAM J. Math. Anal. 34, 173–203 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Gourley, S.A.: Travelling front solutions of a nonlocal Fisher equation. J. Math. Biol. 41, 272–284 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Gourley, S.A., Britton, N.F.: A predator–prey reaction–diffusion system with nonlocal effects. J. Math. Biol. 34, 297–333 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Gourley, S.A., Ruan, S.: Dynamics of the diffusive Nicholson’s blowflies with distributed delay. Proc. R. Soc. Edinb. Sect. A 130, 1275–1291 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Gourley, S.A., So, J.W.-H.: Dynamics of a food-limited population model incorporating nonlocal delays on a finite domain. J. Math. Biol. 44, 49–78 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Gourley, S.A., So, J.W.-H., Wu, J.H.: Nonlocality of reaction–diffusion equations induced by delay: biological modeling and nonlinear dynamics. J. Math. Sci. 124, 5119–5153 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Guo, S.J.: Stability and bifurcation in a reaction–diffusion model with nonlocal delay effect. J. Differ. Equ. 259, 1409–1448 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Guo, S.J., Wu, J.H.: Bifurcation Theory of Functional Differential Equations. Springer, New York (2013)

    Book  MATH  Google Scholar 

  • Gurney, W.S.C., Blythe, S.P., Nisbet, R.M.: Nicholson’s blowflies revisited. Nature 287, 17–21 (1980)

  • Hale, J.: Theory of Functional Differential Equations. Springer, New York (1977)

    Book  MATH  Google Scholar 

  • Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  • Robinson, J.C.: Infinite-Dimensional Dynamical Systems—An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  • So, J.W.-H.: Dynamics of the diffusive Nicholson’s blowflies equation. In: Yang, Y. (ed.). Proceedings of the International Conference on Dynamical Systems and Differential Equation, vol. 2. Springfield, MO, USA, 1996, An added volume to Discrete and Continuous Dynamical Systems, pp. 333–352 (1998)

  • So, J.W.-H., Yu, J.S.: Global attractivity and uniform persistence in Nicholson’s blowflies. Differ. Equ. Dyn. Syst. 2, 11–18 (1994)

    MathSciNet  MATH  Google Scholar 

  • So, J.W.-H., Yang, Y.J.: Dirichlet problem for the diffusive Nicholson’s blowflies equation. J. Differ. Equ. 150, 317–348 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • So, J.W.-H., Wu, J.H., Yang, Y.J.: Numerical steady state and Hopf bifurcation analysis on the diffusive Nicholsons blowflies equation. Appl. Math. Comput. 111, 33–51 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Su, Y., Wei, J.J., Shi, J.P.: Hopf bifurcations in a reaction–diffusion population model with delay effect. J. Differ. Equ. 247, 1156–1184 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Su, Y., Wei, J.J., Shi, J.: Bifurcation analysis in a delayed diffusive Nicholsons blowflies equation. Nonlinear Anal. Real World Appl. 11, 1692–1703 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, J.H.: Theory and Applications of Partial Functional-Differential Equations. Springer, New York (1996)

    Book  MATH  Google Scholar 

  • Yi, F.Q., Wei, J.J., Shi, J.P.: Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator–prey system. J. Differ. Equ. 246, 1944–1977 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Yan, X.P., Li, W.T.: Stability of bifurcating periodic solutions in a delayed reaction–diffusion population model. Nonlinearity 23, 1413–1431 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Yi, T.S., Zou, X.F.: Global attractivity of the diffusive Nicholson blowflies equation with Neumann boundary condition: A non-monotone case. J. Differ. Equ. 245, 3376–3388 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Yoshida, K.: The Hopf bifurcation and its stability for semilinear diffusion equations with time delay arising in ecology. Hiroshima Math. J. 12, 321–348 (1982)

    MathSciNet  MATH  Google Scholar 

  • Zhao, X.Q.: Global attractivity in a class of nonmonotone reaction–diffusion equations with time delay. Can. Appl. Math. Q. 17, 271–281 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Natural Science Foundation of China (Grant No. 11271115) and by the Doctoral Fund of Ministry of Education of China (Grant No. 20120161110018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shangjiang Guo.

Additional information

Communicated by Sue Ann Campbell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Ma, L. Stability and Bifurcation in a Delayed Reaction–Diffusion Equation with Dirichlet Boundary Condition. J Nonlinear Sci 26, 545–580 (2016). https://doi.org/10.1007/s00332-016-9285-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-016-9285-x

Keywords

Mathematics Subject Classification

Navigation