Skip to main content

Advertisement

Log in

Energy Scaling Law for the Regular Cone

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We consider a thin elastic sheet in the shape of a disk whose reference metric is that of a singular cone. That is, the reference metric is flat away from the center and has a defect there. We define a geometrically fully nonlinear free elastic energy and investigate the scaling behavior of this energy as the thickness h tends to 0. We work with two simplifying assumptions: Firstly, we think of the deformed sheet as an immersed 2-dimensional Riemannian manifold in Euclidean 3-space and assume that the exponential map at the origin (the center of the sheet) supplies a coordinate chart for the whole manifold. Secondly, the energy functional penalizes the difference between the induced metric and the reference metric in \(L^\infty \) (instead of, as is usual, in \(L^2\)). Under these assumptions, we show that the elastic energy per unit thickness of the regular cone in the leading order of h is given by \(C^*h^2|\log h|\), where the value of \(C^*\) is given explicitly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambrosio, L.: Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces. Adv. Math. 159(1), 51–67 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000)

    MATH  Google Scholar 

  • Ben Amar, M., Pomeau, Y.: Crumpled paper. Proc. R. Soc. Lond. Ser. A 453(1959), 729–755 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Bernstein, F.: Über die isoperimetrische Eigenschaft des Kreises auf der Kugeloberfläche und in der Ebene. Math. Ann. 60(1), 117–136 (1905)

    Article  MathSciNet  Google Scholar 

  • Borisov, J.F.: On the connection between the spatial form of smooth surfaces and their intrinsic geometry. Vestnik Leningrad. Univ. 14(13), 20–26 (1959)

    MathSciNet  MATH  Google Scholar 

  • Borisov, J.F.: On the question of parallel displacement on a smooth surface and the connection of space forms of smooth surfaces with their intrinsic geometries. Vestnik Leningrad. Univ. 15(19), 127–129 (1960)

    MathSciNet  Google Scholar 

  • Borisov, J.F.: \(C^{1,\,\alpha }\)-isometric immersions of Riemannian spaces. Dokl. Akad. Nauk SSSR 163, 11–13 (1965)

    MathSciNet  Google Scholar 

  • Borisov, J.F.: Irregular surfaces of the class \(C^{1,\beta }\) with an analytic metric. Sibirsk. Mat. Zh. 45(1), 25–61 (2004)

    MathSciNet  MATH  Google Scholar 

  • Brandman, J., Kohn, R.V., Nguyen, H.-M.: Energy scaling laws for conically constrained thin elastic sheets. J. Elast. 113(2), 251–264 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Cerda, E., Chaieb, S., Melo, F., Mahadevan, L.: Conical dislocations in crumpling. Nature 401, 46–49 (1999)

    Article  Google Scholar 

  • Cerda, E., Mahadevan, L.: Conical surfaces and crescent singularities in crumpled sheets. Phys. Rev. Lett. 80, 2358–2361 (1998)

    Article  Google Scholar 

  • Conti, S., Maggi, F.: Confining thin elastic sheets and folding paper. Arch. Ration. Mech. Anal. 187(1), 1–48 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Didonna, B.A., Witten, T.A.: Anomalous strength of membranes with elastic ridges. Phys. Rev. Lett. 87(20), 206105 (2001)

    Article  Google Scholar 

  • do Carmo, M.P.: Differential geometry of curves and surfaces. Prentice-Hall Inc., Englewood Cliffs (1976). Translated from the Portuguese

    MATH  Google Scholar 

  • Fonseca, Irene, Gangbo, Wilfrid: Degree theory in analysis and applications, volume 2 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, New York (1995). Oxford Science Publications

  • Friesecke, G., James, R.D., Müller, S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Comm. Pure Appl. Math. 55(11), 1461–1506 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001)

    MATH  Google Scholar 

  • Gromov, M.: Partial Differential Relations, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 9. Springer, Berlin (1986)

    Google Scholar 

  • Jin, W., Kohn, R.V.: Singular perturbation and the energy of folds. J. Nonlinear Sci. 10(3), 355–390 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Kohn, Robert V., Müller, Stefan: Relaxation and regularization of nonconvex variational problems. In: Proceedings of the Second International Conference on Partial Differential Equations (Italian) (Milan, 1992), volume 62, pp. 89–113 (1994), 1992

  • Kohn, R.V., Müller, S.: Surface energy and microstructure in coherent phase transitions. Comm. Pure Appl. Math. 47(4), 405–435 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Kramer, E.M., Witten, T.A.: Stress condensation in crushed elastic manifolds. Phys. Rev. Lett. 78, 1303–1306 (1997)

    Article  Google Scholar 

  • Kramer, E.M.: The von Karman equations, the stress function, and elastic ridges in high dimensions. J. Math. Phys. 38(2), 830–846 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Kuiper, N.H.: On \(C^1\)-isometric imbeddings. I, II. Nederl. Akad. Wetensch. Proc. Ser. A. 58 =. Indag. Math. 17(545–556), 683–689 (1955)

    Article  Google Scholar 

  • Liang, T., Witten, T.A.: Spontaneous curvature cancellation in forced thin sheets. Phys. Rev. E 73(4), 046604 (2006)

    Article  Google Scholar 

  • Lidmar, J., Mirny, L., Nelson, D.R.: Virus shapes and buckling transitions in spherical shells. Phys. Rev. E 68(5), 051910 (2003)

    Article  Google Scholar 

  • Lobkovsky, A., Gentges, S., Li, H., Morse, D., Witten, T.A.: Scaling properties of stretching ridges in a crumpled elastic sheet. Science 270(5241), 1482–1485 (1995)

    Article  Google Scholar 

  • Lobkovsky, A.E., Witten, T.A.: Properties of ridges in elastic membranes. Phys. Rev. E 55, 1577–1589 (1997)

    Article  Google Scholar 

  • Lobkovsky, A.E.: Boundary layer analysis of the ridge singularity in a thin plate. Phys. Rev. E (3) 53(4, part B), 3750–3759 (1996)

    Article  MathSciNet  Google Scholar 

  • Miranda, M.: Functions of bounded variation on “good” metric spaces. J. de mathématiques pures et appliquées 82(8), 975–1004 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Müller, S., Olbermann, H.: Almost conical deformations of thin sheets with rotational symmetry. SIAM J. Math. Anal. 46(1), 25–44 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Müller, S., Olbermann, H.: Conical singularities in thin elastic sheets. Calc. Var. Partial Differ. Equ. 49(3–4), 1177–1186 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Nash, J.: \(C^1\) isometric imbeddings. Ann. Math. 2(60), 383–396 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  • Pogorelov, A.V.: Extrinsic geometry of convex surfaces. American Mathematical Society, Providence, R.I., 1973. Translated from the Russian by Israel Program for Scientific Translations, Translations of Mathematical Monographs, Vol. 35

  • Seung, H.S., Nelson, D.R.: Defects in flexible membranes with crystalline order. Phys. Rev. A 38, 1005–1018 (1988)

    Article  Google Scholar 

  • Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol. II, 2nd edn. Publish or Perish Inc, Wilmington (1979)

    MATH  Google Scholar 

  • Venkataramani, S.C.: Lower bounds for the energy in a crumpled elastic sheet–a minimal ridge. Nonlinearity 17(1), 301–312 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Witten, T.A.: Stress focusing in elastic sheets. Rev. Mod. Phys. 79, 643–675 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Witten, T.A., Li, H.: Asymptotic shape of a fullerene ball. EPL (Europhysics Letters) 23(1), 51 (1993)

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank Stefan Müller for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiner Olbermann.

Ethics declarations

Conflict of Interest

The author declares that he has no conflict of interest.

Human participants / animals

The research carried out for this article did not involve human participants or animals.

Additional information

Communicated by Robert V. Kohn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olbermann, H. Energy Scaling Law for the Regular Cone. J Nonlinear Sci 26, 287–314 (2016). https://doi.org/10.1007/s00332-015-9275-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-015-9275-4

Keywords

Mathematics Subject Classification

Navigation