Skip to main content
Log in

Scaling Instability in Buckling of Axially Compressed Cylindrical Shells

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this paper, we continue the development of mathematically rigorous theory of “near-flip” buckling of slender bodies of arbitrary geometry, based on hyperelasticity. In order to showcase the capabilities of this theory, we apply it to buckling of axially compressed circular cylindrical shells. The theory confirms the classical formula for the buckling load, whereby the perfect structure buckles at the stress that scales as the first power of shell’s thickness. However, in the case of imperfections of load, the theory predicts scaling instability of the buckling stress. Depending on the type of load imperfections, buckling may occur at stresses that scale as thickness to the power 1.5 or 1.25, corresponding to the lower and upper ends, respectively, of the historically accumulated experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. In this paper, we will use the term “slender” in a mathematically precise sense defined in Grabovsky and Truskinovsky (2007) (see also Definition 2.5 below).

  2. While hyperelasticity is hardly the “ultimate” theory of elasticity, it is sufficiently general to capture buckling of slender structures.

  3. Alternatively, scaling of the forces and additional information on how the forces are applied, sufficient to determine the scaling of the energy, may be given.

  4. The notion of slenderness, introduced in Grabovsky and Truskinovsky (2007), is recalled in Definition 2.5.

  5. The question of existence of the buckling mode \(\varvec{\phi }^{*}_{h}\) is irrelevant here, since the goal of this discussion is to motivate our somewhat unusual definition of a buckling mode below, which makes no existence assumptions.

  6. This is a consequence of a classical result in matrix algebra, due to I. Schur, that even though the product of two positive definite matrices do not have to be positive definite, its trace is always positive.

  7. Of course, it is the family of bodies \(\Omega _{h}\) that may or may not be “slender” according to our definition. We abuse the terminology for the sake of euphony.

  8. The former happens when \(\sigma _{1}+\sigma _{2}<0\), where \(\sigma _{1}\le \sigma _{2}\le \sigma _{3}\) are the principal stresses, the latter when \(\sigma _{2}+\sigma _{3}<0\).

  9. We note that \(s=\)constant is a consequence of \(u^{1}_{z}(\theta ,0)=0\), while \(t=\)constant is a consequence of \(u^{1}_{\theta }(\theta ,0)=0\).

  10. We emphasize that we are studying stability of the nonlinearly elastic trivial branch in the context of fully nonlinear hyperelasticity. Linear elastic equations supply the leading-order asymptotics of the fully nonlinear critical load.

  11. Recall that we are investigating imperfections of load where the boundary conditions at \(z=L\) are not fully specified. This gives us just enough freedom to choose \(\beta _{0}\) arbitrarily.

References

  • Almroth, B.O.: Postbuckling behaviour of axially compressed circular cylinders. AIAA J. 1, 627–633 (1963)

    Article  Google Scholar 

  • Brush, D.O., Almroth, B.O.: Buckling of Bars, Plates, and Shells. McGraw-Hill, New York (1975)

    MATH  Google Scholar 

  • Budiansky, B., Hutchinson, J.: A Survey of Some Buckling Problems. Technical report CR-66071, NASA, February (1966)

  • Budiansky, B., Hutchinson, J.: Buckling: progress and challenge. In: Besseling, J.F., van der Heijden, (eds.) Trends in Solid Mechanics 1979. Proceedings of the Symposium Dedicated to the 65 th Birthday of W. T. Koiter, pp. 185–208. Delft University, Delft University Press Sijthoff & Noordhoff International Publishers (1979)

  • Calladine, C., Barber, J.: Simple experiments on self-weight buckling of open cylindrical shells. J. Appl. Mech. 37(4), 1150–1151 (1970)

    Article  Google Scholar 

  • Calladine, C.R.: A shell-buckling paradox resolved. In: Durban, D., Givoli, G., Simmonds, J.G. (eds.) Advances in the Mechanics of Plates and Shells, Volume 88 of Solid Mechanics and its Applications, pp. 119–134. Kluwer Academic Publishers, Dordrecht (2002)

    Chapter  Google Scholar 

  • Euler, L.: Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes sive solutio problematis isoperimetrici latissimo sensu accepti, Additamentum I. De curvis elasticis. Bousquet, Lausannae et Genevae, 1744. Opera Omnia, Ser. I, Vol. 24. English translation by Oldfather, W. A. and Ellis, C. A. and Brown, D. M. in Isis 20(1), 72–160 (1933)

  • Fosdick, R., Foti, P., Fraddosio, A., Piccioni, M.D.: A lower bound estimate of the critical load for compressible elastic solids. Continuum Mech. Thermodyn. 22(2), 77–97 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Friedrichs, K.O.: On the boundary-value problems of the theory of elasticity and Korn’s inequality. Ann. Math. 48(2), 441–471 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  • Friesecke, G., James, R.D., Müller, S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. 55(11), 1461–1506 (2002)

    Article  MATH  Google Scholar 

  • Friesecke, G., James, R.D., Müller, S.: A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence. Arch. Ration. Mech. Anal. 180(2), 183–236 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Goldenveizer, A.L.: Mathematical rigidity of surfaces and physical rigidity of shells. Mech. Solids 14(6), 65–77 (1979)

    MathSciNet  Google Scholar 

  • Gorman, D.J., Evan-Iwanowski, R.M.: An analytical and experimental investigation of the effects of large prebuckling deformations on the buckling of clamped thin-walled circular cylindrical shells subjected to axial loading and internal pressure. Dev. Theor. Appl. Mech. 4, 415–426 (1970)

    Google Scholar 

  • Grabovsky, Y., Harutyunyan, D.: Exact scaling exponents in Korn and Korn-type inequalities for cylindrical shells. SIAM J. Math Anal. 46(5), 3277–3295 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Grabovsky, Y., Harutyunyan, D.: Rigorous derivation of the buckling load in axially compressed circular cylindrical shells. J. Elast. 120(2), 249–276 (2015)

    Article  MathSciNet  Google Scholar 

  • Grabovsky, Y., Truskinovsky, L.: The flip side of buckling. Contin. Mech. Thermodyn. 19(3–4), 211–243 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Griggs, J.: Experimental study of buckling of thin-walled cylindrical shells. Masters of arts thesis, Temple University, Philadelphia, PA (2010)

  • Hill, R.: On the elasticity and stability of perfect crystals at finite strain. Math. Proc. Camb. Philos. Soc. 77, 225–240 (1975)

    Article  MATH  Google Scholar 

  • Holden, J.T.: Estimation of critical loads in elastic stability theory. Arch. Ration. Mech. Anal. 17, 171–183 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  • Horák, J., Lord, G.J., Peletier, M.A.: Cylinder buckling: the mountain pass as an organizing center. SIAM J. Appl. Math. 66(5), 1793–1824 (2006). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  • Hunt, G., Lord, G., Champneys, A.: Homoclinic and heteroclinic orbits underlying the post-buckling of axially-compressed cylindrical shells. Comput. Methods Appl. Mech. Eng. 170(3), 239–251 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Hunt, G., Lord, G., Peletier, M.: Cylindrical shell buckling: a characterization of localization and periodicity. Discrete Continuous Dyn. Syst. Ser. B 3(4), 505–518 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Hunt, G., Neto, E.L.: Localized buckling in long axially-loaded cylindrical shells. J. Mech. Phys. Solids 39(7), 881–894 (1991)

    Article  MATH  Google Scholar 

  • Hunt, G.W., Neto, E.L.: Maxwell critical loads for axially loaded cylindrical shells. Trans. ASME 60, 702–706 (1993)

    Article  Google Scholar 

  • Koiter, W.T.: On the Stability of Elastic Equilibrium. PhD thesis, Technische Hogeschool, Technological University of Delft, Delft, Holland (1945)

  • Lancaster, E., Calladine, C., Palmer, S.: Paradoxical buckling behaviour of a thin cylindrical shell under axial compression. Int. J. Mech. Sci. 42(5), 843–865 (2000)

    Article  MATH  Google Scholar 

  • Lewicka, M., Mahadevan, L., Pakzad, M.R.: The Föppl-von Kármán equations for plates with incompatible strains. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467(2126), 402–426 (2011). With supplementary data available online

    Article  MathSciNet  MATH  Google Scholar 

  • Lewicka, M., Mora, M.G., Pakzad, M.R.: The matching property of infinitesimal isometries on elliptic surfaces and elasticity of thin shells. Arch. Ration. Mech. Anal. 200(3), 1023–1050 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Lord, G., Champneys, A., Hunt, G.: Computation of localized post buckling in long axially compressed cylindrical shells. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 355(1732), 2137–2150 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Lorenz, R.: Die nicht achsensymmetrische Knickung dünnwandiger Hohlzylinder. Phys. Z. 12(7), 241–260 (1911)

    MATH  Google Scholar 

  • Mandal, P., Calladine, C.: Buckling of thin cylindrical shells under axial compression. Int. J. Solids Struct. 37(33), 4509–4525 (2000)

    Article  MATH  Google Scholar 

  • Mora, M.G., Müller, S.: A nonlinear model for inextensible rods as a low energy \(\Gamma \)-limit of three-dimensional nonlinear elasticity. Ann. Inst. H. Poincaré Anal. Non Linéaire 21(3), 271–293 (2004)

    MATH  Google Scholar 

  • Southwell, R.V.: LXX. On the collapse of tubes by external pressure. Philos. Mag. Ser. 6 25(149), 687–698 (1913a)

  • Southwell, R.V.: XXXVIII. On the collapse of tubes by external pressure—II. Lond. Edinb. Dublin Philos. Mag. J. Sci. 26(153), 502–511 (1913b)

  • Southwell, R.V.: LX. On the collapse of tubes by external pressure—III. Lond. Edinb. Dublin Philos. Mag. J. Sci. 29(169), 67–77 (1915)

  • Tennyson, R.C.: An Experimental Investigation of the Buckling of Circular Cylindrical Shells in Axial Compression Using the Photoelastic Technique. Technical report 102, University of Toronto, Toronto, ON, Canada (1964)

  • Timoshenko, S.: Towards the question of deformation and stability of cylindrical shell. Vesti Obshestva Tekhnologii 21, 785–792 (1914)

    Google Scholar 

  • Timoshenko, S., Woinowsky-Krieger, S.: Theory of Plates and Shells, vol. 2, 2nd edn. McGraw-Hill, New York (1959)

    Google Scholar 

  • von Kármán, T., Dunn, L.G., Tsien, H.-S.: The influence of curvature on the buckling characteristics of structures. J. Aeronaut. Sci. 7, 276–289 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  • Von Mises, R.: Der kritische aussendruck zylindrischer Rohre. VDI-Zeitschrift 58(19), 750–755 (1914)

    Google Scholar 

  • Weingarten, V.I., Morgan, E.J., Seide, P.: Elastic stability of thin-walled cylindrical and conical shells under axial compression. AIAA J 3, 500–505 (1965)

    Article  Google Scholar 

  • Yamaki, N.: Elastic Stability of Circular Cylindrical Shells, vol. 27. Appl. Math. Mech. North Holland (1984)

  • Zhu, E., Mandal, P., Calladine, C.: Buckling of thin cylindrical shells: an attempt to resolve a paradox. Int. J. Mech. Sci. 44(8), 1583–1601 (2002)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We are grateful to Eric Clement, Robert V. Kohn, Stephan Luckhaus, Mark Peletier, and Lev Truskinovsky for insightful comments and questions. We also want to thank the anonymous referees whose suggestions helped improve the exposition. This material is based upon work supported by the National Science Foundation under Grants No. 1412058.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yury Grabovsky.

Additional information

Communicated by Robert V. Kohn.

Appendix: Nonlinear Trivial Branch for a Neo-Hookean Material

Appendix: Nonlinear Trivial Branch for a Neo-Hookean Material

We note that in order to derive the asymptotics of the critical load in the presence of torsion, only the explicit linear trivial branch (4.14) is needed. However, for the result to be legitimate, we also need to know the existence of the regular trivial branch, and not its explicit representation. At the moment, we lack tools for establishing existence of regular trivial branches, nor can we exhibit one entirely explicitly for a material whose energy density satisfies our regularity assumptions. Here we derive an explicit form of the regular trivial branch for an incompressible neo-Hookean material in the way of providing “evidence” for our assumption of existence of the regular trivial branch for compressible materials.

The strain energy density function for a neo-Hookean solid has the form

$$\begin{aligned} W(\varvec{F})=\frac{E}{6}(|\varvec{F}|^{2}-3),\qquad \det \varvec{F}=1. \end{aligned}$$
(6.1)

We are looking for a trivial branch in a cylindrical shell, given in cylindrical coordinates by

$$\begin{aligned} y_{r}=\psi (r)\cos (\alpha z),\qquad y_{\theta }=\psi (r)\sin (\alpha z),\qquad y_{z}=(1-\lambda )z, \end{aligned}$$
(6.2)

where \(\psi (r)\) also depends on \(\alpha \), \(\lambda \), and h. When \(\alpha =0\), we expect that \(\psi (r)\) will reduce to \((a(\lambda )+1)r\), as in (3.4). We remark that the ansatz (6.2) should also work for isotropic compressible materials with strain energy density

$$\begin{aligned} W(\varvec{F})=\displaystyle \frac{1}{2}|\varvec{F}|^{2}+H(\det \varvec{F}),\quad H'(1)=-1,\quad H''(1)>\displaystyle \frac{1}{3}, \end{aligned}$$

except the resulting nonlinear second-order boundary value problem for \(\psi (r)\)

$$\begin{aligned} {\left\{ \begin{array}{ll} \psi ''+\dfrac{\psi '}{r}-\left( \alpha ^{2}+\displaystyle \frac{1}{r^{2}}\right) \psi =(1-\lambda )\dfrac{\psi }{r} \dfrac{d}{dr}\left[ H'\left( (1-\lambda )\dfrac{\psi \psi '}{r}\right) \right] ,&{}r\in I_{h},\\ \psi '+(1-\lambda )\dfrac{\psi }{r}H'\left( (1-\lambda )\dfrac{\psi \psi '}{r}\right) =0,&{}r=1 \pm \dfrac{h}{2} \end{array}\right. } \end{aligned}$$
(6.3)

cannot be solved explicitly.

Returning to the neo-Hookean solid (6.1), we must have

$$\begin{aligned} \det (\nabla \varvec{y})=(1-\lambda )\psi '(r)\frac{\psi (r)}{r}=1, \end{aligned}$$

and hence,

$$\begin{aligned} \psi (r)=\sqrt{\frac{r^{2}}{1-\lambda }+\beta } \end{aligned}$$
(6.4)

for some \(\beta >-1\).

The Piola–Kirchhoff stress function is

$$\begin{aligned} \varvec{P}(\varvec{F})=\frac{E}{3}\left( \varvec{F}-\frac{3\hat{p}}{E}\mathrm {cof}(\varvec{F})\right) , \end{aligned}$$

where the Lagrange multiplier \(\hat{p}\) plays the role of pressure. For \(\varvec{y}\), given by (6.2) and \(\varvec{F}=\nabla \varvec{y}\), we compute

$$\begin{aligned} \varvec{F}^{T}\varvec{F}= \begin{bmatrix} (\psi '(r))^{2}&0&0\\ 0&\frac{\psi (r)^{2}}{r^{2}}&\frac{\alpha \psi (r)^{2}}{r}\\ 0&\frac{\alpha \psi (r)^{2}}{r}&\alpha ^{2}\psi (r)^{2} + (1-\lambda )^{2} \end{bmatrix}. \end{aligned}$$

The traction-free condition \(\varvec{P}\varvec{e}_{r}=\varvec{0}\) on \(r=1\pm h/2\) can be written as

$$\begin{aligned} \varvec{F}^{T}\varvec{F}\varvec{e}_{r}=p\varvec{e}_{r},\quad r=1\pm \frac{h}{2},\qquad p=3\hat{p}/E. \end{aligned}$$

The formula for \(\varvec{F}^{T}\varvec{F}\), together with \(\det \varvec{F}=1\), implies that

$$\begin{aligned} p(r,\theta ,z)=(\psi '(r))^{2},\quad r=1\pm \frac{h}{2}. \end{aligned}$$
(6.5)

This suggests that it is reasonable to look for the trivial branch for which the function \(p(r,\theta ,z)\) depends only on r. Under this assumption, we compute

$$\begin{aligned} \frac{3}{E}\varvec{P}= \begin{bmatrix} s_{1}(r)\cos (\alpha z)&\quad -s_{2}(r)\sin (\alpha z)&\quad -s_{3}(r)\sin (\alpha z)\\ s_{1}(r)\sin (\alpha z)&\quad s_{2}(r)\cos (\alpha z)&\quad s_{3}(r)\cos (\alpha z)\\ 0&\quad q_{1}(r)&\quad q_{2}(r) \end{bmatrix}, \end{aligned}$$

where

$$\begin{aligned} s_{1}=\psi '-\frac{p}{\psi '},\quad s_{2}=\frac{\psi }{r}-\frac{rp}{\psi },\quad s_{3}=\alpha \psi ,\quad q_{1}=\frac{\alpha rp}{1-\lambda },\quad q_{2}=1-\lambda -\frac{p}{1-\lambda }. \end{aligned}$$

It follows that \(\nabla \cdot \varvec{P}=\varvec{0}\) results in a single ODE for p(r):

$$\begin{aligned} (rs_{1})'=s_{2}+\alpha rs_{3}. \end{aligned}$$
(6.6)

Substituting (6.4) for \(\psi (r)\) into (6.6) and solving for p(r), we obtain

$$\begin{aligned} p(r)=\displaystyle \frac{1}{2(1-\lambda )}\left( \ln \left( \frac{1}{1-\lambda }+\frac{\beta }{r^{2}}\right) -r^{2}\alpha ^{2} -\frac{\beta (1-\lambda )}{r^{2}+\beta (1-\lambda )}+\gamma \right) \end{aligned}$$

for some constant of integration \(\gamma \). The traction-free boundary conditions (6.5) become

$$\begin{aligned} \frac{r^{2}}{r^{2}+\beta (1-\lambda )}=\ln \left( \frac{1}{1-\lambda }+\frac{\beta }{r^{2}}\right) -r^{2}\alpha ^{2} +\gamma -1,\quad r=1\pm \frac{h}{2}. \end{aligned}$$
(6.7)

To simplify notation, we denote

$$\begin{aligned} \Phi (r;\lambda ,\beta )=\ln \left( \frac{1}{1-\lambda }+\frac{\beta }{r^{2}}\right) - \frac{r^{2}}{r^{2}+\beta (1-\lambda )}. \end{aligned}$$

Then (6.7) can be written as

$$\begin{aligned} {\left\{ \begin{array}{ll} \alpha ^{2}\left( 1+\frac{h}{2}\right) ^{2}=\Phi \left( 1+\frac{h}{2};\lambda ,\beta \right) +\gamma -1,\\ \alpha ^{2}\left( 1-\frac{h}{2}\right) ^{2}=\Phi \left( 1-\frac{h}{2};\lambda ,\beta \right) +\gamma -1 \end{array}\right. } \end{aligned}$$
(6.8)

Eliminating \(\gamma \) from (6.8), we obtain

$$\begin{aligned} \alpha ^{2}=\displaystyle \frac{1}{2h}\left( \Phi \left( 1+\frac{h}{2};\lambda ,\beta \right) -\Phi \left( 1-\frac{h}{2};\lambda ,\beta \right) \right) . \end{aligned}$$

when h is small

$$\begin{aligned} \alpha ^{2}\approx \displaystyle \frac{1}{2}\Phi '(1;\lambda ,\beta )=-\frac{\beta (1-\lambda )(2+\beta (1-\lambda ))}{(1+\beta (1-\lambda ))^{2}}. \end{aligned}$$

Thus, when \((h,\lambda )\rightarrow (0,0)\), \(\beta \approx -\alpha ^{2}/2\). We conclude that \(\alpha \), and, therefore, \(\beta \) must go to zero, as \(\lambda \rightarrow 0\), since otherwise the trivial branch \(\varvec{y}(\varvec{x};h,\lambda )\), given by (6.2), (6.4) will not emanate from the undeformed configuration. The regularity of the trivial branch in \(\lambda \) demands that \(\alpha (h,\lambda )\sim \alpha _{0}(h)\lambda \), as \(\lambda \rightarrow 0\). Thus, for an arbitrary fixed parameter \(\beta _{0}>0\), we setFootnote 11 \(\beta =-\beta _{0}^{2}\lambda ^{2}/2\), resulting in the explicit expression for the parameter \(\alpha \):

$$\begin{aligned} \alpha (\lambda ,h)=\sqrt{\frac{\Phi (1+h/2;\lambda ,-\beta _{0}^{2}\lambda ^{2}/2) -\Phi (1-h/2;\lambda ,-\beta _{0}^{2}\lambda ^{2}/2)}{2h}}. \end{aligned}$$
(6.9)

Hence, the nonlinear trivial branch has the form

$$\begin{aligned} y_{r}= & {} \sqrt{\frac{r^{2}}{1-\lambda }-\frac{\beta _{0}^{2}\lambda ^{2}}{2}}\cos (\alpha (\lambda ,h)z),\nonumber \\ y_{\theta }= & {} \sqrt{\frac{r^{2}}{1-\lambda }-\frac{\beta _{0}^{2}\lambda ^{2}}{2}}\sin (\alpha (\lambda ,h)z),\quad y_{z}=(1-\lambda )z, \end{aligned}$$
(6.10)

where \(\beta _{0}>0\) is a constant and \(\alpha (\lambda ,h)\) is given by (6.9). We compute

$$\begin{aligned} \left. \displaystyle \frac{\partial \alpha }{\partial \lambda }\right| _{\lambda =0}=\frac{4\beta _{0}}{4-h^{2}},\qquad \left. \displaystyle \frac{\partial \psi }{\partial \lambda }\right| _{\lambda =0}=\frac{r}{2}. \end{aligned}$$

Therefore, the linearized trivial branch displacement \(\varvec{u}^{h}\) is given by

$$\begin{aligned} u^{h}_{r}=\left. \displaystyle \frac{\partial y_{r}}{\partial \lambda }\right| _{\lambda =0}=\frac{r}{2},\qquad u^{h}_{\theta }=\left. \displaystyle \frac{\partial y_{\theta }}{\partial \lambda }\right| _{\lambda =0}=\frac{4\beta _{0}rz}{4-h^{2}},\qquad u^{h}_{z}=\left. \displaystyle \frac{\partial y_{z}}{\partial \lambda }\right| _{\lambda =0}=-z. \end{aligned}$$

The corresponding linear stress and its \(h\rightarrow 0\) limit are

$$\begin{aligned} \varvec{\sigma }_{h}=E \begin{bmatrix} 0&0&0\\ 0&0&\frac{4\beta _{0}r}{3(4-h^{2})}\\ 0&\frac{4\beta _{0}r}{3(4-h^{2})}&-1 \end{bmatrix},\qquad \varvec{\sigma }^{0}=E \begin{bmatrix} 0&0&0\\ 0&0&\frac{\beta _{0}}{3}\\ 0&\frac{\beta _{0}}{3}&-1 \end{bmatrix}. \end{aligned}$$

These agree with formulas (4.14), (4.16) for \(\nu =1/2\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grabovsky, Y., Harutyunyan, D. Scaling Instability in Buckling of Axially Compressed Cylindrical Shells. J Nonlinear Sci 26, 83–119 (2016). https://doi.org/10.1007/s00332-015-9270-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-015-9270-9

Keywords

Mathematics Subject Classification

Navigation