Skip to main content
Log in

Orbital-Free Density Functional Theory of Out-of-Plane Charge Screening in Graphene

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We propose a density functional theory of Thomas–Fermi–Dirac–von Weizsäcker type to describe the response of a single layer of graphene resting on a dielectric substrate to a point charge or a collection of charges some distance away from the layer. We formulate a variational setting in which the proposed energy functional admits minimizers, both in the case of free graphene layers and under back-gating. We further provide conditions under which those minimizers are unique and correspond to configurations consisting of inhomogeneous density profiles of charge carrier of only one type. The associated Euler–Lagrange equation for the charge density is also obtained, and uniqueness, regularity and decay of the minimizers are proved under general conditions. In addition, a bifurcation from zero to nonzero response at a finite threshold value of the external charge is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Note that in Brey and Fertig (2009), Das Sarma et al. (2011) and some other papers in the physics literature, a factor of \({{\mathrm{sgn}}}(\rho )\) was mistakenly added to the integrand of the Thomas–Fermi term. The resulting energy functional is then not bounded from below and is inconsistent with the Thomas–Fermi equation.

References

  • Abergel, D.S.L., Pietiläinen, P., Chakraborty, T.: Electronic compressibility of graphene: the case of vanishing electron correlations and the role of chirality. Phys. Rev. B 80, 081408 (2009)

    Article  Google Scholar 

  • Abergel, D.S.L., Apalkov, V., Berashevich, J., Ziegler, K., Chakraborty, T.: Properties of graphene: a theoretical perspective. Adv. Phys. 59, 261–482 (2010)

    Article  Google Scholar 

  • Ando, T.: Screening effect and impurity scattering in monolayer graphene. J. Phys. Soc. Jpn. 75, 074716 (2006)

    Article  Google Scholar 

  • Armitage, D.H.: A counter-example in potential theory. J. Lond. Math. Soc. 10(2), 16–18 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  • Barlas, Y., Pereg-Barnea, T., Polini, M., Asgari, R., MacDonald, A.H.: Chirality and correlations in graphene. Phys. Rev. Lett. 98, 236601 (2007)

    Article  Google Scholar 

  • Benguria, R.D., Brezis, H., Lieb, E.H.: The Thomas–Fermi–von Weizsäcker theory of atoms and molecules. Commun. Math. Phys. 79, 167–180 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  • Benguria, R.D., Loss, M., Siedentop, H.: Stability of atoms and molecules in an ultrarelativistic Thomas–Fermi–Weizsäcker model. J. Math. Phys. 49, 012302 (2008)

    Article  MathSciNet  Google Scholar 

  • Brey, L., Fertig, H.A.: Linear response and the Thomas–Fermi approximation in undoped graphene. Phys. Rev. B 80, 035406 (2009)

    Article  Google Scholar 

  • Brézis, H., Browder, F.: A property of Sobolev spaces. Commun. Partial Differ. Equ. 4, 1077–1083 (1979)

    Article  MATH  Google Scholar 

  • Cancès, E., Ehrlacher, V.: Local defects are always neutral in the Thomas–Fermi–von Weiszäcker theory of crystals. Arch. Ration. Mech. Anal. 202, 933–973 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Carmona, R., Masters, W.C., Simon, B.: Relativistic Schrödinger operators: asymptotic behavior of the eigenfunctions. J. Funct. Anal. 91, 117–142 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  • Cartan, H.: Théorie du potentiel newtonien: énergie, capacité, suites de potentiels. Bull. Soc. Math. Fr. 73, 74–106 (1945)

    MATH  MathSciNet  Google Scholar 

  • Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    Article  Google Scholar 

  • Das Sarma, S., Adam, S., Hwang, E.H., Rossi, E.: Electronic transport in twodimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011)

    Article  Google Scholar 

  • Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • DiVincenzo, D.P., Mele, E.J.: Self-consistent effective-mass theory for intralayer screening in graphite intercalation compounds. Phys. Rev. B 29, 1685–1694 (1984)

    Article  Google Scholar 

  • du Plessis, N.: An introduction to potential theory. University Mathematical Monographs, No. 7. Hafner Publishing Co., Darien (1970)

  • Engel, E., Dreizler, R.M.: Field-theoretical approach to a relativistic Thomas–Fermi–Weizsäcker model. Phys. Rev. A. 35, 3607–3618 (1987)

    Article  Google Scholar 

  • Engel, E., Dreizler, R.M.: Solution of the relativistic Thomas–Fermi–Dirac–Weizsäcker model for the case of neutral atoms and positive ions. Phys. Rev. A. 38, 3909–3917 (1988)

    Article  Google Scholar 

  • Fefferman, C.L., Weinstein, M.I.: Honeycomb lattice potentials and Dirac points. J. Am. Math. Soc. 25, 1169–1220 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Fefferman, C.L., Weinstein, M.I.: Wave packets in honeycomb structures and two-dimensional Dirac equations. Commun. Math. Phys. 326, 251–286 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  • Felmer, P., Quaas, A., Tan, J.: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinb. Sect. A Math. 142, 1237–1262 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Fogler, M.M., Novikov, D.S., Shklovskii, B.I.: Screening of a hypercritical charge in graphene. Phys. Rev. B 76, 233402 (2007)

    Article  Google Scholar 

  • Frank, R.L., Lieb, E.H., Seiringer, R.: Hardy–Lieb–Thirring inequalities for fractional Schrödinger operators. J. Am. Math. Soc. 21, 925–950 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • García-Cuerva, J., Gatto, A.E.: Boundedness properties of fractional integral operators associated to non-doubling measures. Studia Math. 162, 245–261 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  Google Scholar 

  • González, J., Guinea, F., Vozmediano, M.A.H.: Non-fermi liquid behavior of electrons in the half-filled honeycomb lattice (a renormalization group approach). Nucl. Phys. B 424, 595–618 (1994)

    Article  Google Scholar 

  • Hainzl, C., Lewin, M., Sparber, C.: Ground state properties of graphene in Hartree–Fock theory. J. Math. Phys. 63, 095220 (2012)

    Article  MathSciNet  Google Scholar 

  • Hwang, E.H., Das Sarma, S.: Dielectric function, screening, and plasmons in twodimensional graphene. Phys. Rev. B 75, 205418 (2007)

    Article  Google Scholar 

  • Kaleta, K., Lörinczi, J.: Fractional \(P(\phi )_{1}\)-processes and Gibbs measures. Stoch. Process. Appl. 122, 3580–3617 (2012)

    Article  MATH  Google Scholar 

  • Katsnelson, M.I.: Nonlinear screening of charge impurities in graphene. Phys. Rev. B 74, 201401(R) (2006)

    Article  Google Scholar 

  • Kotov, V.N., Uchoa, B., Pereira, V.M., Guinea, F., Castro Neto, A.H.: Electron–electron interactions in graphene: current status and perspectives. Rev. Mod. Phys. 84, 1067–1125 (2012)

    Article  Google Scholar 

  • Landkof, N.S.: Foundations of modern potential theory. Springer, New York (1972). Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band. 180

  • Le Bris, C., Lions, P.-L.: From atoms to crystals: a mathematical journey. Bull. Am. Math. Soc. (N.S.) 42, 291–363 (2005)

    Article  MATH  Google Scholar 

  • Lieb, E.H.: Thomas–Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53, 603–641 (1981)

    Article  MathSciNet  Google Scholar 

  • Lieb, E.H., Loss, M., Siedentop, H.: Stability of relativistic matter via Thomas–Fermi theory. Helv. Phys. Acta 69, 974–984 (1996)

    MATH  MathSciNet  Google Scholar 

  • Lieb, E.H., Loss, M.: Analysis, second, graduate studies in mathematics, vol. 14. American Mathematical Society, Providence (2001)

    Google Scholar 

  • Lieb, E.H., Simon, B.: The Thomas–Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22–116 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  • Lieb, E.H., Yau, H.-T.: The stability and instability of relativistic matter. Commun. Math. Phys. 118, 177–213 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  • Lu, J., Moroz, V., Muratov, C.B.: In: preparation (2015)

  • Martin, J., Akerman, N., Ulbricht, G., Lohmann, T., Smet, J.H., von Klitzing, K., Yacoby, A.: Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 4, 144–148 (2008)

    Article  Google Scholar 

  • Maz’ja, V.G., Havin, V.P.: A nonlinear potential theory. Uspehi Mat. Nauk 27, 67–138 (1972)

    MathSciNet  Google Scholar 

  • Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  Google Scholar 

  • Polini, M., Tomadin, A., Asgari, R., MacDonald, A.H.: Density functional theory of graphene sheets. Phys. Rev. B 78, 115426 (2008)

    Article  Google Scholar 

  • Reed, J.P., Uchoa, B., Joe, Y.I., Gan, Y., Casa, D., Fradkin, E., Abbamonte, P.: The effective fine-structure constant of freestanding graphene measured in graphite. Science 330, 805–808 (2010)

    Article  Google Scholar 

  • Reed, M., Simon, B.: Methods of modern mathematical physics. IV. Analysis of operators. Academic Press, New York (1978)

    MATH  Google Scholar 

  • Rempel, S.: Über die Nichtvollständigkeit eines Raumes von Ladungen mit endlicher Energie. Math. Nachr. 72, 87–91 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  • Ruiz, D.: On the Schrödinger–Poisson–Slater system: behavior of minimizers, radial and nonradial cases. Arch. Ration. Mech. Anal. 198, 349–368 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Shung, K.W.K.: Dielectric function and plasmon structure of stage-1 intercalated graphite. Phys. Rev. B 34, 979–993 (1986)

    Article  Google Scholar 

  • Shytov, A.V., Katsnelson, M.I., Levitov, L.S.: Vacuum polarization and screening of supercritical impurities in graphene. Phys. Rev. Lett. 99, 236801 (2007)

    Article  Google Scholar 

  • Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60, 67–112 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Sodemann, I., Fogler, M.M.: Interaction corrections to the polarization function of graphene. Phys. Rev. B 86, 115408 (2012)

    Article  Google Scholar 

  • Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton mathematical series, vol. 30. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  • Struwe, M.: Variational methods. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  • Wallace, P.R.: The band theory of graphite. Phys. Rev. 71, 622–634 (1947)

    Article  MATH  Google Scholar 

  • Wang, J., Fertig, H.A., Murthy, G., Brey, L.: Excitonic effects in two-dimensional massless Dirac fermions. Phys. Rev. B 83, 035404 (2011)

    Article  Google Scholar 

  • Wang, Y., Brar, V.W., Shytov, A.V., Wu, Q., Regan, W., Tsai, H.-Z., Zettl, A., Levitov, L.S., Crommie, M.F.: Mapping Dirac quasiparticles near a single Coulomb impurity on graphene. Nat. Phys. 8, 653–657 (2012)

    Article  Google Scholar 

  • Yu, G.L., Jalil, R., Bell, B., Mayorov, A.S., Blake, P., Schedin, F., Morozov, S.V., Ponomarenko, L.A., Chiappini, F., Wiedmann, S., Zeitler, U., Katsnelson, M.I., Geim, A.K., Novoselov, K.S., Elias, D.C.: Interaction phenomena in graphene seen through quantum capacitance. Proc. Natl. Acad. Sci. USA 110, 3282–3286 (2013)

    Article  Google Scholar 

  • Zhang, L.M., Fogler, M.M.: Nonlinear screening and ballistic transport in a graphene p–n junction. Phys. Rev. Lett. 100, 116804 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank an anonymous referee for helpful suggestions. JL would like to acknowledge support from the Alfred P. Sloan Foundation and the National Science Foundation under award DMS-1312659. CBM was supported, in part, by the National Science Foundation via grants DMS-0908279 and DMS-1313687.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyrill B. Muratov.

Additional information

Communicated by Felix Otto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Moroz, V. & Muratov, C.B. Orbital-Free Density Functional Theory of Out-of-Plane Charge Screening in Graphene. J Nonlinear Sci 25, 1391–1430 (2015). https://doi.org/10.1007/s00332-015-9259-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-015-9259-4

Keywords

Navigation