Skip to main content
Log in

Monotonicity of Spatial Critical Points Evolving Under Curvature-Driven Flows

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We describe the variation of the number \(N(t)\) of spatial critical points of smooth curves (defined as a scalar distance \(r\) from a fixed origin \(O\)) evolving under curvature-driven flows. In the latter, the speed \(v\) in the direction of the surface normal may only depend on the curvature \(\kappa \). Under the assumption that only generic saddle-node bifurcations occur, we show that \(N(t)\) will decrease if the partial derivative \(v_{\kappa }\) is positive and increase if it is negative (Theorem 1). Justification for the genericity assumption is provided in Sect. 5. For surfaces embedded in 3D, the normal speed \(v\) under curvature-driven flows may only depend on the principal curvatures \(\kappa , \lambda \). Here we prove the weaker (stochastic) Theorem 2 under the additional assumption that third-order partial derivatives can be approximated by random variables with zero expected value and covariance. Theorem 2 is a generalization of a result by Kuijper and Florack for the heat equation. We formulate a Conjecture for the case when the reference point coincides with the centre of gravity and we motivate the Conjecture by intermediate results and an example. Since models for collisional abrasion are governed by partial differential equations with \(v_{\kappa },v_{\lambda }>0\), our results suggest that the decrease of the number of static equilibrium points is characteristic of some natural processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alvarez, L., Guichard, F., Lions, P., Morel, J.: Axioms and fundamental equations of image processing. Arch. Ration. Mech. Anal. 123, 199–257 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  • Andrews, B.: Contraction of convex hypersurfaces in Euclidean space. Calc. Var. 2, 151–171 (1994)

    Article  MATH  Google Scholar 

  • Andrews, B.: Gauss curvature flow: the fate of rolling stones. Invent. Math. 138, 151–161 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Andrews, B.: Motion of hypersurfaces by Gauss curvature. Pac. J. Math. 195, 1–34 (2000)

    Article  MATH  Google Scholar 

  • Bloore, F.J.: The shape of pebbles. Math. Geol. 9, 113–122 (1977)

    Article  MathSciNet  Google Scholar 

  • Bruce, J.W., Giblin, P.J., Gibson, C.G.: On caustics of plane curves. Am. Math. Mon. 88, 651–667 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  • Chow, B.: On Harnack’s inequailty and entropy for the Gaussian curvature flow. Commun. Pure Appl. Math. XLIV, 469–483 (1991)

    Article  Google Scholar 

  • Damon, J.: Morse theory for solutions to the heat equation and Gaussian blurring. J. Differ. Equ. 115, 368–401 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  • Domokos, G., Jerolmack, D., Sipos, A.A., Török, A.: How river rocks round: explinaining the size-shape paradox. PloS One (2014). doi:10.1371/journal.pone.0088657

    Google Scholar 

  • Domokos, G., Lángi, Z.: On the equilibria of finely discretized curves and surfaces. Monatshefte für Mathematik 168, 321–345 (2012)

    Article  MATH  Google Scholar 

  • Domokos, G., Sipos, A., Szabó, G., Várkonyi, P.: Formation of sharp edges and plane areas of asteroids by polyhedral abrasion. Astrophys. J. 699, L13–L16 (2009)

    Article  Google Scholar 

  • Fidal, D.L., Giblin, P.J.: Generic one-parameter families of caustics in the plane. Math. Proc. Camb. Philos. Soc. 96, 425–432 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  • Firey, W.: The shape of worn stones. Mathematika 21, 1–11 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  • Grayson, M.A.: The heat equation shrinks embedded plane curves to round points. J. Differ. Geom. 26, 285–314 (1987)

    MATH  MathSciNet  Google Scholar 

  • Hamilton, R.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17, 255–306 (1982)

    MATH  Google Scholar 

  • Huisken, G.: Flow by mean curvature of convex surfaces into spheres. J. Differ. Geom. 20, 237–266 (1984)

    MATH  MathSciNet  Google Scholar 

  • Huisken, G.: Asymptotic behavior for singularities of the mean curvature flow. J. Differ. Geom. 31, 285–299 (1990)

    MATH  MathSciNet  Google Scholar 

  • Kardar, M., Parisi, G., Zhang, Y.-C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)

    Article  MATH  Google Scholar 

  • Kimia, B., Siddiqi, K.: Geometric heat equation and nonlinear diffusion of shapes and images. Comput. Vis. Image Underst. 64, 305–322 (1996)

    Article  Google Scholar 

  • Koenderink, J.: The structure of images. Biol. Cybern. 50, 363–370 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  • Kuijper, A., Florack, L.: The relevance of non-generic events in scale space models. Int. J. Comput. Vis. 57, 67–84 (2004)

    Article  Google Scholar 

  • Lanczos, C.: Linear Differential Operators. SIAM, Philadelphia (1996)

    Book  MATH  Google Scholar 

  • Leichtweiss, K.: Remarks on affine evolutions. Abh. Math. Sem. Univ. Hamburg 66, 355–376 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Loog, M., Duistermaat, J., Florack, L.: On the behavior of spatial critical points under Gaussian blurring: a Folklore Theorem and scale-space constraints. Scale-Space and Morphology in Computer Vision, Lecture Notes in Computer Science 2106, 183–192 (2001)

  • Lu, C., Cao, Y., Mumford, D.: Surface evolution under curvature flows. J. Vis. Commun. Image Rep. 13, 65–81 (2002)

    Article  Google Scholar 

  • Maritan, A., Toigo, F., Koplik, J., Banavar, J.: Dynamics of growing interfaces. Phys. Rev. Lett. 69, 3193–3195 (1992)

    Article  Google Scholar 

  • Marsilli, M., Maritan, A., Toigo, F., Banavar, J.: Stochastic growth equations and reparameterization invariance. Rev. Mod. Phys. 68, 963–983 (1996)

    Article  Google Scholar 

  • Mokhtarian, F., Abbasi, S., Kittler, J.: Efficient and robust retrieval by shape content through curvature scale space, pp. 35–42. In: International Workshop on Image Databases and Multimedia, Search (1996)

  • Mokhtarian, F., Suomela, R.: Robust image corner detection through curvature scale space. IEEE Trans. Pattern Anal. Mach. Intell. 20(12), 1376–1381 (1998)

    Article  Google Scholar 

  • Peitgen, H., Saupe, D., Schmitt, K.: Nonlinear elliptic boundary value problems versus finite difference approximations: numerically irrelevant solutions. J. Reine u. Angew. Math (Crelle) 322, 74–117 (1981)

    MATH  MathSciNet  Google Scholar 

  • Perelman, G.: Ricci flow with surgery on three-manifolds. http://arXiv.org/math.DG/0303109v1 (2003)

  • Poston, T., Stewart, I.: Catastrophe theory and its applications. Pitman, London (1978)

    MATH  Google Scholar 

  • Rayleigh, L.: The ultimate shape of pebbles, natural and artificial. Proc. R. Soc. Lond. A 181, 107–118 (1942)

    Article  Google Scholar 

  • Rayleigh, L.: Pebbles, natural and artificial. Their shape under various conditions of abrasion. Proc. R. Soc. Lond. A 182, 321–334 (1944)

    Article  Google Scholar 

  • Rayleigh, L.: Pebbles of regular shape and their production in experiment. Nature 154, 161–171 (1944)

    Article  Google Scholar 

  • Turyn, L.: Spatial critical points of solutions of a one-dimensional nonlinear parabolic problem. Proc. AMS 106, 1003–1009 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  • Whiteside, D. (ed.): The Mathematical Papers of Isaac Newton, vol. 3. Cambridge University Press, Cambridge (1969)

    MATH  Google Scholar 

  • Zeidler, E. (ed.): Oxford’s User Guide to Mathematics, p. 772. Oxford University Press, Oxford, New York (2004)

    Google Scholar 

Download references

Acknowledgments

This work was supported by OTKA Grant T104601. The comments and suggestions from Zsolt Gáspár, Gary Gibbons, Phil Holmes and two anonymous referees are gratefully acknowledged. The author is very grateful to Zsolt Lángi for his invaluable help with computing the derivatives of the principal curvatures with the aid of Maple 16 and for his many other helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Domokos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mw 131 KB)

Appendix

Appendix

First compute the three curves \(\beta ^G_1(\alpha ), \beta ^G_2(\alpha ), \beta _3(\alpha )\) in Fig. 4. We use the notations of Fig. 6. The curves \(\beta ^G_1(\alpha ), \beta ^G_2(\alpha )\) separate the domains with \(N=10\) and \(N=6\) critical points. We can compute these lines based on the conditions that the centre of gravity \(G\) should coincide with \(P_1,P_2\), respectively. In the case of \(G\equiv P_1\) we have to write moment balance to the horizontal line passing through \(P_1\):

$$\begin{aligned} \frac{h^2}{12}=\frac{a^2}{2} \end{aligned}$$
(78)

and by substituting \(h=0.5\tan (\alpha )\), \(a=\tan (\beta )\) we get

$$\begin{aligned} \beta ^G_1(\alpha )=\arctan \left( \frac{\tan (\alpha )}{2\sqrt{3}}\right) . \end{aligned}$$
(79)
Fig. 6
figure 6

Geometry of the symmetric 5-gon

In the case of \(G\equiv P_2\) we have

$$\begin{aligned} \frac{h}{2}\left( \frac{h}{3}+c\right) =a\left( \frac{a}{2}-c\right) \end{aligned}$$
(80)

and by substituting \(h=0.5\tan (\alpha )\), \(a=\tan (\beta ), c=1/(2\tan (\alpha ))\) we get

$$\begin{aligned} \frac{\tan (\alpha )}{4}\left( \frac{\tan (\alpha )}{6}+\frac{1}{2\tan (\alpha )}\right) =\tan (\beta )\left( \frac{\tan (\beta )}{2}-\frac{1}{2\tan (\alpha )}\right) \end{aligned}$$
(81)

which yields

$$\begin{aligned} \beta ^G_2(\alpha )=\arctan \left( \frac{1}{2\tan (\alpha )}\left( 1+\sqrt{1 +\frac{\tan ^4(\alpha )}{3}+\tan ^2(\alpha )} \right) \right) \end{aligned}$$
(82)

For the invariant subspace we consider the geometry of the 5-gon where all edges are tangent to the largest inscribed circle and we can write

$$\begin{aligned} a-\frac{1}{2}=\frac{1}{2}\tan \left( \frac{\pi }{4}-\frac{\alpha }{2}\right) \end{aligned}$$
(83)

yielding

$$\begin{aligned} \beta _3(\alpha )=\arctan \left( \frac{1}{2}\tan \left( \frac{\pi }{4}-\frac{\alpha }{2}\right) +\frac{1}{2}\right) . \end{aligned}$$
(84)

In the case of fixed reference point we choose the centre of the largest inscribed circle which is the ultimate point under Eikonal abrasion. To find the critical curves \(\beta ^{U}_i(\alpha ),(i=1,2)\) we write the conditions for \(U\equiv P_i\), yielding

$$\begin{aligned} \beta ^{U}_1(\alpha )&= \arctan \left( \frac{\sin (\alpha )}{2}\right) \end{aligned}$$
(85)
$$\begin{aligned} \beta ^{U}_2(\alpha )&= \arctan \left( \frac{1}{2}\frac{\tan (\alpha )+1}{\tan (\alpha )}\right) . \end{aligned}$$
(86)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domokos, G. Monotonicity of Spatial Critical Points Evolving Under Curvature-Driven Flows. J Nonlinear Sci 25, 247–275 (2015). https://doi.org/10.1007/s00332-014-9228-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-014-9228-3

Mathematics Subject Classification

Navigation