Skip to main content
Log in

An Instability Criterion for Nonlinear Standing Waves on Nonzero Backgrounds

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

A nonlinear Schrödinger equation with repulsive (defocusing) nonlinearity is considered. As an example, a system with a spatially varying coefficient of the nonlinear term is studied. The nonlinearity is chosen to be repelling except on a finite interval. Localized standing wave solutions on a non-zero background, e.g., dark solitons trapped by the inhomogeneity, are identified and studied. A novel instability criterion for such states is established through a topological argument. This allows instability to be determined quickly in many cases by considering simple geometric properties of the standing waves as viewed in the composite phase plane. Numerical calculations accompany the analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdullaev, F.Kh, Gammal, A., Kamchatnov, A.M., Tomio, L.: Dynamics of bright matter wave solitons in a Bose–Einstein condensate. Int. J. Mod. Phys. B 19, 3415 (2005)

    Article  MATH  Google Scholar 

  • Abdullaev, F.Kh, Galimzyanov, R.M., Ismatullaev, Kh N.: Quasi 1D Bose–Einstein condensate flow past a nonlinear barrier. Phys. Lett. A 376, 3372–3376 (2012)

    Article  Google Scholar 

  • Andersen, D.R., Skinner, S.R.: Stability analysis of the fundamental dark surface wave. J. Opt. Soc. Am. B 8, 2265–2268 (1991)

    Article  Google Scholar 

  • Ao, S.-M., Yan, J.-R.: A perturbation method for dark solitons based on a complete set of the squared Jost solutions. J. Phys. A 38, 2399 (2005)

  • Barashenkov, I.V.: Stability criterion for dark solitons. Phys. Rev. Lett. 77, 1193–1197 (1996)

    Article  Google Scholar 

  • Burger, S., Bongs, K., Dettmer, S., Ertmer, W., Sengstock, K., Sanpera, A., Shlyapnikov, G.V., Lewenstein, M.: Dark solitons in Bose–Einstein condensates. Phys. Rev. Lett. 83, 5198–5201 (1999)

    Article  Google Scholar 

  • Carusotto, I., Embriaco, D., La Rocca, G.C.: Nonlinear atom optics and bright-gap-soliton generation in finite optical lattices. Phys. Rev. A 65, 053611 (2002)

  • Chen, Y., Tran, H.T.: Gray and dark spatial solitary waves in slab waveguides. Opt. Lett. 17, 580–582 (1992)

    Article  Google Scholar 

  • Chen, X.J., Chen, Z.D., Huang, N.N.: A direct perturbation theory for dark solitons based on a complete set of the squared Jost solutions. J. Phys. A 31, 6929–6947 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Denschlag, J., et al.: Generating solitons by phase engineering of a Bose–Einstein condensate. Science 287, 97–101 (2000)

    Article  Google Scholar 

  • Di Menza, L., Gallo, C.: The black solitons of one-dimensional NLS equations. Nonlinearity 20, 461–496 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Frantzeskakis, D.J.: Dark solitons in atomic Bose–Einstein condensates: from theory to experiments. J. Phys. A 43, 213001 (2010)

    Article  MathSciNet  Google Scholar 

  • Hakim, V.: Nonlinear Schrödinger flow past an obstacle in one dimension. Phys. Rev. E 55, 2835 (1997)

    Article  Google Scholar 

  • Huang, N.N., Chi, S., Chen, X.J.: Foundations of direct perturbation method for dark solitons. J. Phys. A 32, 3939–3945 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Jones, C.K.R.T.: Instability of standing waves for non-linear Schrödinger-type equations. Ergod. Theory Dyn. Syst. 8, 119–138 (1988)

    Article  MATH  Google Scholar 

  • Kapitula, T., Rubin, J.: Existence and stability of standing hole solutions to complex Ginzburg–Landau equations. Nonlinearity 13, 77–112 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Kartashov, Y.V., Malomed, B.A., Torner, L.: Solitons in nonlinear lattices. Rev. Mod. Phys. 83, 247–305 (2011)

    Article  Google Scholar 

  • Kevrekidis, P.G., Frantzeskakis, D.J.: Pattern forming dynamical instabilities of Bose–Einstein condensates. Mod. Phys. Lett. B 18, 173 (2004)

    Article  Google Scholar 

  • Kevrekidis, P.G., Franzeskakis, D.J., Carretero-González, R. (eds.): Emergent Nonlinear Phenomena in Bose–Einstein Condensates. Springer, New York (2007)

    Google Scholar 

  • Kivshar, YuS, Yang, X.: Perturbation-induced dynamics of dark solitons. Phys. Rev. E 49, 1657–1670 (1994)

    Article  MathSciNet  Google Scholar 

  • Kivshar, YuS, Królikowski, W.: Instabilities of dark solitons. Opt. Lett. 20, 1527–1529 (1995)

    Article  Google Scholar 

  • Kivshar, Y.S., Krolikowski, W.: Lagrangian approach for dark solitons. Opt. Commun. 114, 353–362 (1995)

    Article  Google Scholar 

  • Kivshar, YuS, Luther-Davies, B.: Dark optical solitons: physics and applications. Phys. Rep. 298, 81–197 (1998)

    Article  Google Scholar 

  • Köhler, T., Góral, K., Julienne, P.S.: Production of cold molecules via magnetically tunable Feshbach resonances. Rev. Mod. Phys. 78, 1311–1361 (2006)

    Article  Google Scholar 

  • Kolokolov, A.A.: Lett. Nuovo Cimento Soc. Ital. Fis. 8, 197 (1973)

    Article  Google Scholar 

  • Konotop, V.V., Vekslerchik, V.E.: Direct perturbation theory for dark solitons. Phys. Rev. E 49, 2397–2407 (1994)

    Article  MathSciNet  Google Scholar 

  • Lashkin, V.M.: Perturbation theory for dark solitons: inverse scattering transform approach and radiative effects. Phys. Rev. E 70, 066620 (2004)

    Article  MathSciNet  Google Scholar 

  • Lega, J., Fauve, S.: Traveling hole solutions to the complex Ginzburg–Landau equation as perturbations of nonlinear Schrödinger dark solitons. Phys. D 102, 234–252 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Lin, Z.: Stability and instability of traveling solitonic bubbles. Adv. Diff. Equ. 7, 897–918 (2002)

    MATH  Google Scholar 

  • Marangell, R., Susanto, H., Jones, C. K. R. T: Unstable gap solitons in inhomogeneous nonlinear Schrödinger equations. J. Differ. Equations 253, 1191–1205 (2012)

  • Marangell, R., Jones, C.K.R.T., Susanto, H.: Localized standing waves in inhomogeneous Schrödinger equations. Nonlinearity 23, 2059 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Maris, M.: Stationary solutions to a nonlinear Schrödinger equation with potential in one dimension. Proc. Roy. Soc. Edinb. A 133, 409–437 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Miranda, J., Andersen, D.R., Skinner, S.R.: Stability analysis of stationary nonlinear guided waves in self-focusing and self-defocusing Kerr-like layered media. Phys. Rev. A 46, 5999–6001 (1992)

    Article  Google Scholar 

  • Morandotti, R., Eisenberg, H.S., Silberberg, Y., Sorel, M., Aitchison, J.S.: Self-focusing and defocusing in waveguide arrays. Phys. Rev. Lett. 86, 3296–3299 (2001)

    Article  Google Scholar 

  • Pelinovsky, D.E., Kivshar, YuS, Afanasjev, V.V.: Instability-induced dynamics of dark solitons. Phys. Rev. E 54, 2015–2032 (1996)

    Article  Google Scholar 

  • Pelinovsky, D.E., Kevrekidis, P.G.: Dark solitons in external potentials. ZAMP 59, 559 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Skinner, S.R., Andersen, D.R.: Stationary fundamental dark surface waves. J. Opt. Soc. Am. B 8, 759–764 (1991)

    Article  Google Scholar 

  • Swartzlander Jr, G.A., Andersen, D.R., Regan, J.J., Yin, H., Kaplan, A.E.: Spatial dark-soliton stripes and grids in self-defocusing materials. Phys. Rev. Lett. 66, 1583–1586 (1991)

    Article  Google Scholar 

  • Tran, H.T.: Stability of stationary dark waves guided by nonlinear surfaces and waveguides. J. Opt. Soc. Am. B 11, 789–797 (1994)

    Article  Google Scholar 

  • Vakhitov, M.G., Kolokolov, A.A.: Stationary solutions of the wave equation in the medium with nonlinearity saturation. Izv. Vyssh. Uch. Zav. Radiofiz. 16, 1020 (1973). Radiophys. Quantum Electron 16, 783 (1973)

    Google Scholar 

  • Yamazaki, R., Taie, S., Sugawa, S., Takahashi, Y.: Submicron spatial modulation of an interatomic interaction in a Bose–Einstein condensate. Phys. Rev. Lett. 105, 050405 (2010)

    Article  Google Scholar 

  • Zakharov, V.E., Shabat, A.B.: Zh. Eksp. Teor. Fiz. 64, 1627 (1973) [Sov. Phys. JETP 37, 823 (1973)]

  • Zhidkov, P.E.: Existence of solutions to the Cauchy problem and stability of kink-solutions of the nonlinear Schrödinger equation. Sib. Math. J. 33, 239–246 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Susanto.

Additional information

Communicated by P. Newton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jackson, R.K., Marangell, R. & Susanto, H. An Instability Criterion for Nonlinear Standing Waves on Nonzero Backgrounds. J Nonlinear Sci 24, 1177–1196 (2014). https://doi.org/10.1007/s00332-014-9215-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-014-9215-8

Keywords

Navigation