Skip to main content

Advertisement

Log in

Metric-Induced Wrinkling of a Thin Elastic Sheet

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We study the wrinkling of a thin elastic sheet caused by a prescribed non-Euclidean metric. This is a model problem for the patterns seen, for example, in torn plastic sheets and the leaves of plants. Following the lead of other authors, we adopt a variational viewpoint, according to which the wrinkling is driven by minimization of an elastic energy subject to appropriate constraints and boundary conditions. We begin with a broad introduction, including a discussion of key examples (some well-known, others apparently new) that demonstrate the overall character of the problem. We then focus on how the minimum energy scales with respect to the sheet thickness \(h\) for certain classes of displacements. Our main result is that when deformations are subject to certain hypotheses, the minimum energy is of order \(h^{4/3}\). We also show that when deformations are subject to more restrictive hypotheses, the minimum energy is strictly larger – of order \(h\); it follows that energy minimization in the more restricted class is not a good model for the applications that motivate this work. Our results do not explain the cascade of wrinkles seen in some experimental and numerical studies, and they leave open the possibility that an energy scaling law better than \(h^{4/3}\) could be obtained by considering a larger class of deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Audoly, B., Boudaoud, A.: ‘Ruban à godets’: an elastic model for ripples in plant leaves. Comptes Rendus Mecanique 330, 831–836 (2002)

    Article  MATH  Google Scholar 

  • Audoly, B., Boudaoud, A.: Self-similar structures near boundaries in strained systems. Phys. Rev. Lett. 91, 086105 (2003)

    Article  Google Scholar 

  • Audoly, B., Pomeau, Y.: Elasticity and Geometry. Oxford University Press, Oxford. From hair curls to the non-linear response of shells. With a foreword by John W. Hutchinson, MR 2677203 (2010)

  • Bella, P., Kohn, R.V.: Wrinkles as the result of compressive stresses in an annular thin film. Comm. Pure Appl. Math. 67, 693–747 (2014)

  • Ben Belgacem, H., Conti, S., DeSimone, A., Müller, S.: Rigorous bounds for the Föppl-von Kármán theory of isotropically compressed plates. J. Nonlinear Sci. 10(6), 661–683 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Ben Belgacem, H., Conti, S., DeSimone, A., Müller, S.: Energy scaling of compressed elastic films–three-dimensional elasticity and reduced theories. Arch. Ration. Mech. Anal. 164(1), 1–37 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Brandman, J., Kohn, R.V., Nguyen, H.-M.: Energy scaling laws for conically constrained thin elastic sheets. J. Elasticity 113(2), 251–264 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  • Cerda, E., Mahadevan, L.: Geometry and physics of wrinkling. Phys. Rev. Lett. 90(7), 074302 (2003)

    Article  Google Scholar 

  • Conti, S., Maggi, F.: Confining thin elastic sheets and folding paper. Arch. Ration. Mech. Anal. 187(1), 1–48 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Davidovitch, B., Schroll, R.D., Cerda, E.: Nonperturbative model for wrinkling in highly bendable sheets. Phys. Rev. E 85, 066115 (2012)

    Article  Google Scholar 

  • Davidovitch, B., Schroll, R.D., Vella, D., Adda-Bedia, M., Cerda, E.: Prototypical model for tensional wrinkling in thin sheets. Proc. Natl. Acad. Sci. 108(45), 18227–18232 (2011)

    Article  Google Scholar 

  • Gemmer, J., Venkataramani, S.: Shape selection in non-euclidean plates. Physica D 240, 1536–1552 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Healey, T.J., Li, Q., Cheng, R.-B.: Wrinkling behavior of highly stretched rectangular elastic films via parametric global bifurcation. J. Nonlinear Sci. 23(5), 777–805 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  • Jin, W., Sternberg, P.: Energy estimates for the von Kármán model of thin-film blistering. J. Math. Phys. 42(1), 192–199 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Jin W., Sternberg, P.: In-plane displacements in thin-film blistering. Proc. Roy. Soc. Edinburgh Sect. A 132(4): 911–930 (2002). MR 1926922 (2003f:74020).

  • Kim, T.-Y., Puntel, E., Fried, E.: Numerical study of the wrinkling of a stretched thin sheet. Int. J. Solids Str. 49(5), 771–782 (2012)

    Article  Google Scholar 

  • Klein, Y., Venkataramani, S., Sharon, E.: Experimental study of shape transitions and energy scaling in thin non-euclidean plates. Phys. Rev. Lett. 106, 118303 (2011)

    Article  Google Scholar 

  • Koehl, M.A.R., Silk, W.K., Liang, H., Mahadevan, L.: How kelp produce blade shapes suited to different flow regimes: a new wrinkle. Integr. Comp. Biol. 48(6), 834–851 (2008)

    Article  Google Scholar 

  • Kuiper, N.H.: Isometric and short imbeddings. Nederl. Akad. Wetensch. Proc. Ser. A. Indag. Math. 21(62), 11–25 (1959)

    MathSciNet  Google Scholar 

  • Lewicka, M., Mahadevan, L., Pakzad, M.R.: The Föppl–von Kármán equations for plates with incompatible strains. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467(2126), 402–426 (2011). MR 2748099 (2012a:74064)

  • Marder, M.: The shape of the edge of a leaf. Found. Phys. 33(12), 1743–1768 (2003)

    Article  Google Scholar 

  • Marder, M., Papanicolaou, N.: Geometry and elasticity of strips and flowers. J. Stat. Phys. 125(5–6), 1069–1096 (2006)

    MathSciNet  Google Scholar 

  • Marder, M., Sharon, E., Smith, S., Roman, B.: Theory of edges of leaves. Europhys. Lett. 62(4), 498–504 (2003)

    Article  Google Scholar 

  • Nash, J.: \({C}^1\) isometric imbeddings. Annal. Math. 60(3), 383–396 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  • Puntel, E., Deseri, L., Fried, E.: Wrinkling of a stretched thin sheet. J. Elasticity 105(1–2), 137–170 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Sharon, E., Marder, M., Swinney, H.L.: Leaves, flowers and garbage bags: making waves. Am. Sci. 92(3), 254–261 (2004)

    Article  Google Scholar 

  • Sharon, E., Roman, B., Marder, M., Shin, G.-S., Swinney, H.L.: Mechanics: buckling cascades in free sheets. Nature 419, 579 (2002)

    Article  Google Scholar 

  • Sharon, E., Roman, B., Swinney, H.L.: Geometrically driven wrinkling observed in free plastic sheets and leaves. Phys. Rev. E 75(4), 046211 (2007)

    Article  Google Scholar 

  • Venkataramani, S.C.: Lower bounds for the energy in a crumpled elastic sheet—a minimal ridge. Nonlinearity 17(1), 301–312 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Witten, T.A.: Stress focusing in elastic sheets. Rev. Mod. Phys. 79(2), 643–675 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are grateful to Stefan Müller for pointing out that the assumption \(u_h(x,y) \cdot e_1 = x\) is too rigid and for suggesting the ansatz we use to prove the \(h^{4/3}\) upper bound of Theorem 1. We also thank two anonymous referees for their insightful comments and suggestions. This work was begun while PB was a PhD student at the Courant Institute of Mathematical Sciences. Support from NSF Grant DMS-0807347 is gratefully acknowledged. Support is gratefully acknowledged from NSF Grants DMS-0807347 and OISE-0967140.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Bella.

Additional information

Communicated by Felix Otto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bella, P., Kohn, R.V. Metric-Induced Wrinkling of a Thin Elastic Sheet. J Nonlinear Sci 24, 1147–1176 (2014). https://doi.org/10.1007/s00332-014-9214-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-014-9214-9

Keywords

Navigation