Skip to main content
Log in

Groebner Basis Methods for Stationary Solutions of a Low-Dimensional Model for a Shear Flow

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We use Groebner basis methods to extract all stationary solutions for the nine-mode shear flow model described in Moehlis et al. (New J Phys 6:56, 2004). Using rational approximations to irrational wave numbers and algebraic manipulation techniques we reduce the problem of determining all stationary states to finding roots of a polynomial of order 30. The coefficients differ by 30 powers of 10, so that algorithms for extended precision are needed to extract the roots reliably. We find that there are eight stationary solutions consisting of two distinct states, each of which appears in four symmetry-related phases. We discuss extensions of these results for other flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arnold, E.A.: Modular algorithms for computing Gröbner bases. J. Symb. Comput. 35, 403–419 (2003)

    Article  MATH  Google Scholar 

  • Becker, T., Weispfennig, V.: Gröbner Bases: A Computational Approach to Commutative Algebra, Graduate Texts in Mathematics, vol. 141. Springer, Berlin (1993)

    Google Scholar 

  • Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal, Ph.D. thesis, University of Innsbruck (1965)

  • Buchberger, B.: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal. J. Symb. Comput. 41, 475–511 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Clever, R.M., Busse, F.H.: Tertiary and quaternary solutions for plane Couette flow. J. Fluid Mech. 344, 137–153 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. Springer, Berlin (1997)

    Google Scholar 

  • Dijkstra, H.A., Wubs, F.W., Cliffe, A.K., Doedel, E., Dragomirescu, I.F., Eckhardt, B., Yu, A., Gelfgat, Hazel, A.L., Lucarini, V., Salinger, A.G., Phipps, E.T., Sanchez-Umbria, J., Schutrelaars, H., Tuckerman, L.S., Thiele, U.: Numerical bifurcation methods and their application to fluid dynamics: analysis beyond simulation. Commun. Comput. Phys. 15, 1–45 (2014)

    MathSciNet  Google Scholar 

  • Eckhardt, B., Schneider, T.M., Hof, B., Westerweel, J.: Turbulence transition in pipe flow. Annu. Rev. Fluid Mech. 39, 447–468 (2007)

    Article  MathSciNet  Google Scholar 

  • Eckhardt, B., Faisst, H., Schmiegel, A., Schneider, T.M.: Dynamical systems and the transition to turbulence in linearly stable shear flows. Philos. Trans. R. Soc. A 1297–315, 366 (2008)

    Google Scholar 

  • Eckhardt, B.: Turbulence transition in pipe flow: some open questions. Nonlinearity T1, 21 (2008)

    MathSciNet  Google Scholar 

  • Faisst, H., Eckhardt, B.: Traveling waves in pipe flow. Phys. Rev. Lett. 224502, 91 (2003)

    Google Scholar 

  • Gibson, J.F., Halcrow, J., Cvitanović, P.: Visualizing the geometry of state space in plane Couette flow. J. Fluid Mech. 107–130, 611 (2008a)

    Google Scholar 

  • Gibson, J.F., Halcrow, J., Cvitanović, P.: Equilibrium and traveling-wave solutions of plane Couette flow. J. Fluid Mech. 638, 23 (2008b)

    Google Scholar 

  • Gottlieb, D., Orszag, S.: Numerical analysis of spectral methods: theory and applications. In: CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (1977)

  • Greuel, G.-M., Pfister, G, Schönemann, H.: Singular 3.0 A Computer Algebra System for Polynomial Computations, Technical Report. University of Kaiserslautern (2005)

  • Haible, B., Kreckel, R.B.: CLN, A Class Library for Numbers. www.ginac.de/CLN (2008)

  • Halcrow, J., Gibson, J.F., Cvitanović, P., Viswanath, D.: Heteroclinic connections in plane Couette flow. J. Fluid Mech. 365–376, 621 (2009)

    Google Scholar 

  • Hampton, M., Roberts, G.E, Santoprete, M.: Relative Equilibria in the Four-Vortex Problem with Two Pairs of Equal Vorticities. J. Nonlinear Sci. 39–92, 24 (2014)

  • Kerswell, R., Tutty, O.: Recurrence of travelling waves in transitional pipe flow. J. Fluid Mech. 584, 69–102 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Moehlis, J., Faisst, H., Eckhardt, B.: A low-dimensional model for turbulent shear flows. New J. Phys. 6, 56 (2004)

    Article  MathSciNet  Google Scholar 

  • Moehlis, J., Faisst, H., Eckhardt, B.: Periodic orbits and chaotic sets in a low-dimensional model for shear flows. SIAM J. Appl. Dyn. Syst. 4, 352–376 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Nagata, M.: Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity. J. Fluid Mech. 519–527, 217 (1990)

    MathSciNet  Google Scholar 

  • Romanovski, V.G., Shafer, D.S.: The Center and Cyclicity Problems: A Computational Algebra Approach. Birkhäuser, Boston (2009)

    Google Scholar 

  • Ruelle, D.: Large volume limit of the distribution of characteristic exponents in turbulence. Commun. Math. Phys. 87, 287–302 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Schmiegel, A.: Transition to turbulence in linearly stable shear flows, Ph.D thesis, Philipps-Universität Marburg, (1999)

  • Schneider, T.M., Eckhardt, B., Vollmer, J.: Statistical analysis of coherent structures in transitional pipe flow. Phys. Rev. E 75, 66313 (2007)

    Article  MathSciNet  Google Scholar 

  • Schneider, T.M., Gibson, J.F., Lagha, M., De Lillo, F., Eckhardt, B.: Laminar-turbulent boundary in plane Couette flow. Phys. Rev. E 78, 37301 (2008)

    Article  Google Scholar 

  • Temam, R.: Navier–Stokes Equations and Nonlinear Functional Analysis. SIAM, Philadelphia (1995)

    Book  MATH  Google Scholar 

  • Viswanath, D.: Recurrent motions within plane Couette turbulence. J. Fluid Mech. 580, 339–358 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, J., Gibson, J.F., Waleffe, F.: Lower branch coherent states in shear flows: transition and control. Phys. Rev. Lett. 6–8, 98 (2007)

    Google Scholar 

  • Wedin, H., Kerswell, R.R.: Exact coherent structures in pipe flow: travelling wave solutions. J. Fluid Mech. 508, 333–371 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the Deutsche Forschungsgemeinschaft via Forschergruppe 1182. VR acknowledges the support by the Slovenian Research Agency. The work was also supported by the Transnational Access Programme at RISC-Linz of the European Commission Framework 6 Programme for Integrated Infrastructures Initiatives under the Project SCIEnce (Contract 026133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Pausch.

Additional information

Communicated by P. Newton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pausch, M., Grossmann, F., Eckhardt, B. et al. Groebner Basis Methods for Stationary Solutions of a Low-Dimensional Model for a Shear Flow. J Nonlinear Sci 24, 935–948 (2014). https://doi.org/10.1007/s00332-014-9208-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-014-9208-7

Keywords

Navigation