Skip to main content
Log in

Shock Waves in Dispersive Eulerian Fluids

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

The long-time behavior of an initial step resulting in a dispersive shock wave (DSW) for the one-dimensional isentropic Euler equations regularized by generic, third-order dispersion is considered by use of Whitham averaging. Under modest assumptions, the jump conditions (DSW locus and speeds) for admissible, weak DSWs are characterized and found to depend only upon the sign of dispersion (convexity or concavity) and a general pressure law. Two mechanisms leading to the breakdown of this simple wave DSW theory for sufficiently large jumps are identified: a change in the sign of dispersion, leading to gradient catastrophe in the modulation equations, and the loss of genuine nonlinearity in the modulation equations. Large amplitude DSWs are constructed for several particular dispersive fluids with differing pressure laws modeled by the generalized nonlinear Schrödinger equation. These include superfluids (Bose–Einstein condensates and ultracold fermions) and “optical fluids.” Estimates of breaking times for smooth initial data and the long-time behavior of the shock tube problem are presented. Detailed numerical simulations compare favorably with the asymptotic results in the weak to moderate amplitude regimes. Deviations in the large amplitude regime are identified with breakdown of the simple wave DSW theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ablowitz, M.J., Baldwin, D.E., Hoefer, M.A.: Soliton generation and multiple phases in dispersive shock and rarefaction wave interaction. Phys. Rev. E 80(1), 016603 (2009)

    Article  MathSciNet  Google Scholar 

  • Barsi, C., Wan, W., Sun, C., Fleischer, J.W.: Dispersive shock waves with nonlocal nonlinearity. Opt. Lett. 32(20), 2930–2932 (2007)

    Article  Google Scholar 

  • Barsi, C., Wan, W., Jia, S., Fleischer, J.: Spatially dispersive shock waves in nonlinear optics. In: Chen, Z., Morandotti, R. (eds.) Nonlinear Photonics and Novel Optical Phenomena. Springer Series in Optical Sciences, vol. 170, pp. 231–257. Springer, Berlin/Heidelberg (2012)

    Chapter  Google Scholar 

  • Biondini, G., Kodama, Y.: On the Whitham equations for the defocusing nonlinear Schroödinger equation with step initial data. J. Nonlinear Sci. 16, 435–481 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Chang, J.J., Engels, P., Hoefer, M.A.: Formation of dispersive shock waves by merging and splitting Bose-Einstein condensates. Phys. Rev. Lett. 101, 170404 (2008)

    Article  Google Scholar 

  • Chanson, H.: Current knowledge in hydraulic jumps and related phenomena: a survey of experimental results. Eur. J. Mech. B 28(2), 191–210 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Chen, T., Pavlovic, N.: The quintic NLS as the mean field limit of a boson gas with three-body interactions. J. Funct. Anal. 260(4), 959–997 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Christie, D.R.: The morning glory of the gulf of Carpentaria: a paradigm for non-linear waves in the lower atmosphere. Austral. Met. Mag. 41, 21–60 (1992)

    Google Scholar 

  • Christodoulides, D.N., Carvalho, M.I.: Bright, dark, and gray spatial soliton states in photorefractive media. J. Opt. Soc. Am. B 12(9), 1628–1633 (1995)

    Article  Google Scholar 

  • Conforti, M., Baronio, F., Trillo, S.: Dispersive shock waves in phase-mismatched second-harmonic generation. Opt. Lett. 37(6), 1082–1084 (2012)

    Article  Google Scholar 

  • Conti, C., Fratalocchi, A., Peccianti, M., Ruocco, G., Trillo, S.: Observation of a gradient catastrophe generating solitons. Phys. Rev. Lett. 102(8), 083902 (2009)

    Article  Google Scholar 

  • Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock Waves. Springer, New York (1948)

    MATH  Google Scholar 

  • Crosta, M., Fratalocchi, A., Trillo, S.: Bistability and instability of dark-antidark solitons in the cubic-quintic nonlinear Schroödinger equation. Phys. Rev. A 84(6), 011604 (2011)

    Article  Google Scholar 

  • Crosta, M., Trillo, S., Fratalocchi, A.: Crossover dynamics of dispersive shocks in Bose-Einstein condensates characterized by two- and three-body interactions. Phys. Rev. A 85(4), 011604 (2012)

    Article  Google Scholar 

  • Crosta, M., Trillo, S., Fratalocchi, A.: The Whitham approach to dispersive shocks in systems with cubicquintic nonlinearities. New J. Phys. 14(9), 093019 (2012)

    Article  Google Scholar 

  • Csordás, A., Almásy, O., Szépfalusy, P.: Gradient corrections to the local-density approximation for trapped superfluid Fermi gases. Phys. Rev. A 82(6), 063609 (2010)

    Article  Google Scholar 

  • Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics, 3rd edn. Springer, New York (2009)

    Google Scholar 

  • Dias, F., Milewski, P.: On the fully-nonlinear shallow-water generalized Serre equations. Phys. Lett. A 374(8), 1049–1053 (2010)

    Article  MATH  Google Scholar 

  • Dutton, Z., Budde, M., Slowe, C., Hau, L.V.: Observation of quantum shock waves created with ultra-compressed slow light pulses in a Bose-Einstein condensate. Science 293, 663 (2001)

    Article  Google Scholar 

  • El, G.A., Krylov, A.L.: General solution of the Cauchy problem for the defocusing NLS equation in the Whitham limit. Phys. Lett. A 203, 77–82 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  • El, G.A., Geogjaev, V.V., Gurevich, A.V., Krylov, A.L.: Decay of an initial discontinuity in the defocusing NLS hydrodynamics. Phys. D 87, 186–192 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  • El, G.A.: Generating function of the Whitham-KdV hierarchy and effective solution of the Cauchy problem. Phys. Lett. A 222, 393–399 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • El, G.A.: Resolution of a shock in hyperbolic systems modified by weak dispersion. Chaos 15, 037103 (2005)

    Article  MathSciNet  Google Scholar 

  • El, G.A., Grimshaw, R.H.J., Smyth, N.F.: Unsteady undular bores in fully nonlinear shallow-water theory. Phys. Fluids 18(2), 027104–027117 (2006)

    Article  MathSciNet  Google Scholar 

  • El, G.A., Gammal, A., Khamis, E.G., Kraenkel, R.A., Kamchatnov, A.M.: Theory of optical dispersive shock waves in photorefractive media. Phys. Rev. A 76(5), 053813 (2007)

    Article  Google Scholar 

  • Esler, J.G., Pearce, J.D.: Dispersive dam-break and lock-exchange flows in a two-layer fluid. J. Fluid Mech. 667, 555–585 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Forest, M.G., McLaughlin, K.T.-R.: Onset of oscillations in nonsoliton pulses in nonlinear dispersive fibers. J. Nonlinear Sci. 8(1), 43–62 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Gavrilyuk, S.L.: Large amplitude oscillations and their ’thermodynamics’ for continua with ’memory’. Eur. J. Mech. B 13, 753–764 (1994)

    MATH  MathSciNet  Google Scholar 

  • Gavrilyuk, S.L., Teshukov, V.M.: Generalized vorticity for bubbly liquid and dispersive shallow water equations. Contin. Mech. Therm. 13, 365–382 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Ghofraniha, N., Conti, C., Ruocco, G., Trillo, S.: Shocks in nonlocal media. Phys. Rev. Lett. 99, 043903 (2007)

    Article  Google Scholar 

  • Ghofraniha, N.: Amato Santamaria, L., Folli, V., Trillo, S., DelRe, E., Conti, C.: Measurement of scaling laws for shock waves in thermal nonlocal media. Opt. Lett. 37(12), 2325–2327 (2012)

    Article  Google Scholar 

  • Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of ultracold atomic Fermi gases. Rev. Mod. Phys. 80(4), 1215 (2008)

    Article  Google Scholar 

  • Grava, T., Tian, F.-R.: The generation, propagation, and extinction of multiphases in the KdV zero-dispersion limit. Commun. Pure Appl. Math. 55(12), 1569–1639 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Grava, T., Pierce, V.U., Tian, F.-R.: Initial value problem of the Whitham equations for the Camassa-Holm equation. Phys. D 238(1), 55–66 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Green, A.E., Naghdi, P.M.: A derivation of equations for wave propagation in water of variable depth. J. Fluid Mech. 78(02), 237–246 (1976)

    Article  MATH  Google Scholar 

  • Gurevich, A.V., Pitaevskii, L.P.: Nonstationary structure of a collisionless shock wave. Sov. Phys. JETP 38(2), 291–297 (1974). (Translation from Russian of A. V. Gurevich and L. P. Pitaevskii. Zh. Eksp. Teor. Fiz. 65, 590–604 (1973)

    Google Scholar 

  • Gurevich, A.V., Meshcherkin, A.P.: Expanding self-similar discontinuities and shock waves in dispersive hydrodynamics. Sov. Phys. JETP 60(4), 732–740 (1984)

    Google Scholar 

  • Gurevich, A.V., Krylov, A.L.: Dissipationless shock waves in media with positive dispersion. Sov. Phys. JETP 65(5), 944–953 (1987)

    Google Scholar 

  • Gurevich, A.V., Krylov, A.L., El, G.A.: Nonlinear modulated waves in dispersive hydrodynamics. Sov. Phys. JETP 71, 899–910 (1990)

    Google Scholar 

  • Hoefer, M.A., Ablowitz, M.J., Coddington, I., Cornell, E.A., Engels, P., Schweikhard, V.: Dispersive and classical shock waves in Bose-Einstein condensates and gas dynamics. Phys. Rev. A 74, 023623 (2006)

    Article  Google Scholar 

  • Hoefer, M.A., Ablowitz, M.J.: Interactions of dispersive shock waves. Phys. D 236, 44–64 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Hoefer, M.A., Ablowitz, M.J.: Dispersive shock waves. Scholarpedia 4(11), 5562 (2009)

    Google Scholar 

  • Holloway, P., Pelinovsky, E., Talipova, T.: Internal tide transformation and oceanic internal solitary waves. In: Grimshaw, R.H.J. (ed.) Environmental Stratified Flows, pp. 29–60. Kluwer, Boston (2001)

    Google Scholar 

  • Jia, S., Wan, W., Fleischer, J.W.: Dispersive shock waves in nonlinear arrays. Phys. Rev. Lett. 99(22), 223901–223904 (2007)

    Article  Google Scholar 

  • Jia, S., Haataja, M., Fleischer, J.W.: Rayleigh-Taylor instability in nonlinear Schroödinger flow. New J. Phys. 14(7), 075009 (2012)

    Article  Google Scholar 

  • Jin, S., Levermore, C.D., McLaughlin, D.W.: The semiclassical limit of the defocusing NLS hierarchy. Commun. Pure Appl. Math. 52(5), 613–654 (1999)

    Article  MathSciNet  Google Scholar 

  • Joseph, J.A., Thomas, J.E., Kulkarni, M., Abanov, A.G.: Observation of shock waves in a strongly interacting Fermi gas. Phys. Rev. Lett. 106(15), 150401 (2011)

    Article  Google Scholar 

  • Kamchatnov, A.M., Kuo, Y.-H., Lin, T.-C., Horng, T.-L., Gou, S.-C., Clift, R., El, G.A., Grimshaw, R.H.J.: Undular bore theory for the Gardner equation. Phys. Rev. E 86, 036605 (2012)

    Article  Google Scholar 

  • Karpman, V.I.: Non-linear Waves in Dispersive Media. Pergamon Press, Oxford (1974)

    Google Scholar 

  • Ketterle, W., Zwierlein, M.W.: Making, probing and understanding ultracold Fermi gases. Riv. Nuovo Cimento 31(5), 247–422 (2008)

    Google Scholar 

  • Kevrekidis, P.G., Frantzeskakis, D.J., Carretero-Gonzlez, R.: Emergent Nonlinear Phenomena in Bose-Einstein Condensates : Theory and Experiment. Springer Series on Atomic, Optical, and Plasma Physics, vol. 45, pp. 1615–5653. Springer, Berlin (2008).

  • Khamis, E.G., Gammal, A., El, G.A., Yu, G.G., Kamchatnov, A.M.: Nonlinear diffraction of light beams propagating in hotorefractive media with embedded reflecting wire. Phys. Rev. A 78(1), 013829 (2008)

    Article  Google Scholar 

  • Kodama, Y., Pierce, V.U., Tian, F.-R.: On the Whitham equations for the defocusing complex modified KdV equation. SIAM J. Math. Anal. 41(1), 26–58 (2008)

    MathSciNet  Google Scholar 

  • Lax, P.D.: Development of singularities of solutions of nonlinear hyperbolic partial differential equations. J. Math. Phys. 5(5), 611–613 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  • Lax, P.D.: Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. SIAM, Philadelphia (1973)

    Book  MATH  Google Scholar 

  • Lax, P.D., Levermore, C.D.: The small dispersion limit of the Korteweg-de Vries equation: 1. Commun. Pure Appl. Math. 36(3), 253–290 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  • Lax, P.D., Levermore, C.D.: The small dispersion limit of the Korteweg-de Vries equation: 2. Commun. Pure Appl. Math. 36(5), 571–593 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  • Lax, P.D., Levermore, C.D.: The small dispersion limit of the Korteweg-de Vries equation: 3. Commun. Pure Appl. Math. 36(6), 809–830 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  • Leach, J.A., Needham, D.J.: The large-time development of the solution to an initial-value problem for the Korteweg-de Vries equation: I. initial data has a discontinuous expansive step. Nonlinearity 21(10), 2391–2408 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Liepmann, H.W., Roshko, A.: Elements of Gasdynamics. Wiley, New York (1957)

    MATH  Google Scholar 

  • Lowman, N.K., Hoefer, M.A.: Dispersive shock waves in viscously deformable media. J. Fluid Mech. 718, 524–557 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  • Madelung, E.: Quantentheorie in hydrodynamischer form. Zeitschrift fur Physik 40(3–4), 322–326 (1927)

    Article  Google Scholar 

  • Marchant, T., Smyth, N.: Undular bore solution of the Camassa-Holm equation. Phys. Rev. E 73(5), 057602 (2006)

    Article  MathSciNet  Google Scholar 

  • Mateo, Muaz: A.: Effective mean-field equations for cigar-shaped and disk-shaped Bose-Einstein condensates. Phys. Rev. A 77(1), 013617 (2008).

    Google Scholar 

  • Meppelink, R., Koller, S.B., Vogels, J.M., van der Straten, P., van Ooijen, E.D., Heckenberg, N.R., Rubinsztein-Dunlop, H., Haine, S.A., Davis, M.J.: Observation of shock waves in a large Bose-Einstein condensate. Phys. Rev. A 80(4), 043606–043607 (2009)

    Article  Google Scholar 

  • Novikov, S., Manakov, S.V., Pitaevskii, L.P., Zakharov, V.E.: Theory of Solitons. Consultants Bureau, New York (1984)

    MATH  Google Scholar 

  • Pierce, V.U., Tian, F.-R.: Self-similar solutions of the non-strictly hyperbolic Whitham equations. Commun. Math. Sci. 4, 799–822 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Pierce, V.U., Tian, F.-R.: Large time behavior of the zero dispersion limit of the fifth order KdV equation. Dyn. PDE 4(1), 87–109 (2007)

    MATH  MathSciNet  Google Scholar 

  • Pierce, V.U., Tian, F.-R.: Self-similar solutions of the non-strictly hyperbolic Whitham equations for the KdV hierarchy. Dyn. PDE 4(3), 263–282 (2007)

    MATH  MathSciNet  Google Scholar 

  • Rottman, J.W., Grimshaw, R.H.J.: Atmospheric internal solitary waves. In: Grimshaw, R.H.J. (ed.) Environmental Stratified Flows, pp. 61–88. Kluwer, Boston (2001)

    Google Scholar 

  • Salasnich, L., Parola, A., Reatto, L.: Effective wave equations for the dynamics of cigar-shaped and disk-shaped Bose condensates. Phys. Rev. A 65(4), 043614 (2002)

    Article  Google Scholar 

  • Salasnich, L.: Dynamical properties of the unitary Fermi gas: collective modes and shock waves. Few-Body Syst. (2012). doi:10.1007/s00601-012-0442-y

    Google Scholar 

  • Segev, M., Crosignani, B., Yariv, A., Fischer, B.: Spatial solitons in photorefractive media. Phys. Rev. Lett. 68(7), 923 (1992)

    Article  Google Scholar 

  • Serre, F.: Contribution a l’etude des ecoulements permanents et variables dans les canaux. La Houille Blanche 3, 374–388 (1953)

    Article  Google Scholar 

  • Simula, T.P., Engels, P., Coddington, I., Schweikhard, V., Cornell, E.A., Ballagh, R.J.: Observations on sound propagation in rapidly rotating Bose-Einstein condensates. Phys. Rev. Lett. 94, 080404 (2005)

    Article  Google Scholar 

  • Smith, R.K.: Waves and bores in the lower atmosphere: the “morning glory” and related phenomena. Earth-Sci. Rev. 25, 1501–1518 (1988)

    Google Scholar 

  • Smoller, J.: Shock Waves and Reaction-Diffusion Equations. Springer, New York (1994)

    Book  MATH  Google Scholar 

  • Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5(3), 506–517 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  • Su, C.H., Gardner, C.S.: Korteweg-deVries equation and generalizations. III. Derivation of the Korteweg-deVries equation and Burgers equation. J. Math. Phys. 10(3), 536–539 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  • Sulem, C., Sulem, P.-L.: The Nonlinear Schrödinger Equation. Springer, New York (1999)

    MATH  Google Scholar 

  • Taylor, R.J., Baker, D.R., Ikezi, H.: Observation of collisionless electrostatic shocks. Phys. Rev. Lett. 24, 206–209 (1970)

    Article  Google Scholar 

  • Temple, B.: Systems of conservation laws with coinciding shock and rarefaction curves. Contemp. Math 17(143), 151 (1983)

    Google Scholar 

  • Tsarev, S.P.: Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type. Sov. Math. Dokl. 31, 488–491 (1985)

    MATH  Google Scholar 

  • Venakides, S.: The zero-dispersion limit of the Korteweg-de Vries equation with non-trivial reflection coefficient. Commun. Pure Appl. Math. 38, 125–155 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  • Wagner, D.H.: Equivalence of the Euler and Lagrangian equations of gas dynamics for weak solutions. J. Diff. Equ. 68(1), 118–136 (1987)

    Article  MATH  Google Scholar 

  • Wan, W., Jia, S., Fleischer, J.W.: Dispersive superfluid-like shock waves in nonlinear optics. Nat. Phys. 3(1), 46–51 (2007)

    Article  Google Scholar 

  • Wan, W., Muenzel, S., Fleischer, J.W.: Wave tunneling and hysteresis in nonlinear junctions. Phys. Rev. Lett. 104(7), 073903 (2010)

    Article  Google Scholar 

  • Whitham, G.B.: Non-linear dispersive waves. Proc. Roy. Soc. Ser. A 283, 238–261 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  • Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974)

    MATH  Google Scholar 

  • Wijngaarden, L.V.: One-dimensional flow of liquids containing small gas bubbles. Ann. Rev. Fluid Mech. 4, 369–396 (1972)

    Article  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges financial support from the National Science Foundation via DMS-1008973.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Hoefer.

Additional information

Communicated by M. I. Weinstein.

Appendix: Numerical Methods

Appendix: Numerical Methods

The numerical solution of the gNLS equation (3.1) for the shock tube problem, the initial step in density

$$\begin{aligned} \psi (x,0) = \left\{ \begin{array}{ll} 1 &{}\quad x < x_0 \\ \sqrt{\rho _2} &{}\quad x > x_0 \end{array} \right. , \qquad \rho _2 > 1, \end{aligned}$$
(12.1)

is briefly described here. A pseudospectral, time-splitting method is implemented for the accurate solution of long-time evolution for \(x\in (0,L)\). The initial data (11.1) are smoothed by use of the hyperbolic tangent initial condition

$$\begin{aligned} \psi (x,0) = \left\{ \frac{1}{2} [1 + \tanh (x_0-x)](1 - \rho _2) + \rho _2 \right\} ^{1/2} , \end{aligned}$$

where \(x_0 = L/2\). Time stepping proceeds by use of second-order Strang splitting Strang (1968) where the linear PDE

$$\begin{aligned} \mathrm{i} \frac{\partial \psi _\mathrm {L}}{\partial t} = -\frac{1}{2} \frac{\partial ^2 \psi _\mathrm {L}}{\partial x^2}, \qquad \psi _\mathrm {L}(x,t) = \psi (x,t), \end{aligned}$$
(12.2)

is advanced half a time step \(\Delta t/2\) exactly followed by a full time step of the nonlinear ODE

$$\begin{aligned} \mathrm{i} \frac{\partial \psi _{\mathrm {NL}}}{\partial t} = f(|\psi _{\mathrm {NL}}|^2) \psi _{\mathrm {NL}}, \qquad \psi _{\mathrm {NL}}(x,t) = \psi _\mathrm {L}(x,t+\Delta t/2) . \end{aligned}$$
(12.3)

The linear PDE is then advanced half a time step with the initial data \(\psi _\mathrm {L}(x,t+\Delta t/2) = \psi _{\mathrm {NL}}(x,t+\Delta t)\), giving the second-order accurate approximation of \(\psi (x,t+\Delta t) \approx \psi _\mathrm {L}(x, \Delta t)\). Equation (11.2) is projected onto a truncated cosine basis of \(N\) terms that maintains Neumann (\(\psi _x = 0\)) boundary conditions, computed efficiently via the fast Fourier transform (FFT), and integrated explicitly in time. The nonlinear ODE (11.3) conserves \(|\psi _{\mathrm {NL}}|^2\) so is also integrated explicitly in time. The parameter \(\Delta x = L/N\) is the spatial grid spacing of the grid points \(x_j = \Delta x (j - 1/2)\), \(j = 1,2,\ldots ,N\). The accuracy of the solution is monitored by computing the relative deviation in the conserved \(L^2\) norm \(E(t) = \int _{\mathbb {R}} | \psi (x,t) |^2 \mathrm{d} x\), \(E_{\mathrm {rel}} = |E(t_\mathrm {f})-E(0)|/E(0)\) where \(t_\mathrm {f}\) is the final time. All computations presented here exhibit \(E_{\mathrm {rel}} < 10^{-8}\). Also, the accurate spatial resolution of the oscillatory structures is supported by the fact that the coefficient of the largest wavenumber in the cosine series is less than \(5 \cdot 10^{-10}\) (oftentimes much less). The numerical parameters \(L\), \(N\), \(\Delta t\), and \(t_\mathrm {f}\) vary depending upon the nonlinearity strength and jump height; For example, for power-law gNLS with \(p = 2\) and \(\rho _2 \ge 11\), \(N = 2^{16}\), \(L = 1,200\), \(\Delta t = 0.0002\), and \(t_\mathrm {f} = 30\), whereas for \(p = 2/3\) with \(\rho _2 = 2\), \(N = 3 \cdot 2^{14}\), \(L = 3,000\), \(\Delta t = 0.002\), and \(t_\mathrm {f} = 500\).

The extraction of the DSW speeds \(v_+\), \(s_+\), and minimum density \(\rho _\mathrm {min}\) is performed as follows: The precise location of the DSW soliton trailing edge is computed by creating a local cubic spline interpolant through the computed grid points in the neighborhood of the dark soliton minimum. A root finder is applied to the derivative of this interpolant in order to extract the off-grid location of the soliton edge \(x_s(t)\) and \(\rho _\mathrm {min}\equiv |\psi (x_s(t_\mathrm {f}),t_\mathrm {f})|^2\). The slope of a linear least-squares fit through \(x_s(t_j)\) for \(j = 1, \ldots , 100\) equispaced \(t_j \in [t_\mathrm {f}-1,t_\mathrm {f}]\) determines \(s_+\). For the leading, linear wave edge, an envelope function is determined by least-squares fitting two lines, each through about 30 local maxima and minima, respectively, of the DSW density in the vicinity of the trailing edge. The extrema are computed the same as for the soliton minimum. The point of intersection of these two lines is the location of the linear wave edge \(x_v(t)\). The same fitting procedure as was used to determine \(s_+\) from \(x_s(t)\) is used to extract \(v_+\) from \(x_v(t)\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoefer, M.A. Shock Waves in Dispersive Eulerian Fluids. J Nonlinear Sci 24, 525–577 (2014). https://doi.org/10.1007/s00332-014-9199-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-014-9199-4

Keywords

Navigation