Skip to main content
Log in

Importance of variants in cerebrovascular anatomy for potential retrograde embolization in cryptogenic stroke

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To test the hypothesis that variants in cerebrovascular anatomy will affect the number of patients demonstrating a plausible retrograde embolization mechanism from plaques in the descending aorta (DAo).

Methods

Thirty-five patients (aged 63 ± 17 years) with cryptogenic stroke underwent 4D flow MRI for the assessment of aortic 3D blood flow and MR angiography for the evaluation of circle of Willis, posterior circulation, and aortic arch architecture. In patients with proven DAo plaque, retrograde embolization was considered a potential mechanism if retrograde flow extended from the DAo to a supra-aortic vessel supplying the cerebral infarct territory.

Results

Retrograde embolization with matching cerebral infarct territory was detected in six (17%) patients. Circle of Willis and aortic arch variant anatomy was found in 60% of patients, leading to reclassification of retrograde embolization risk as present in three (9%) additional patients, for a total 26% of cryptogenic stroke patients.

Conclusion

4D flow MRI demonstrated 26% concordance with infarct location on imaging with retrograde diastolic flow into the feeding vessels of the affected cerebral area, identifying a potential etiology for cryptogenic stroke. Our findings further demonstrate the importance of cerebrovascular anatomy when determining concordance of retrograde flow pathways with vascular stroke territory from DAo plaques.

Key points

Retrograde embolization from descending aortic plaques constitutes a plausible etiology in cryptogenic stroke.

Common variants of cerebrovascular anatomy are important in determining retrograde embolization mechanism.

Variant cerebrovascular anatomy can link retrograde flow pathways with vascular stroke territory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Petty GW, Brown RD Jr, Whisnant JP, Sicks JD, O'Fallon WM, Wiebers DO (1999) Ischemic stroke subtypes: a population-based study of incidence and risk factors. Stroke 30:2513–2516

    Article  CAS  PubMed  Google Scholar 

  2. Guercini F, Acciarresi M, Agnelli G, Paciaroni M (2008) Cryptogenic stroke: time to determine aetiology. J Thromb Haemost 6:549–554

    Article  CAS  PubMed  Google Scholar 

  3. Kolominsky-Rabas PL, Weber M, Gefeller O, Neundoerfer B, Heuschmann PU (2001) Epidemiology of ischemic stroke subtypes according to TOAST criteria: incidence, recurrence, and long-term survival in ischemic stroke subtypes: a population-based study. Stroke 32:2735–2740

    Article  CAS  PubMed  Google Scholar 

  4. Petty GW, Brown RD Jr, Whisnant JP, Sicks JD, O'Fallon WM, Wiebers DO (2000) Ischemic stroke subtypes : a population-based study of functional outcome, survival, and recurrence. Stroke 31:1062–1068

    Article  CAS  PubMed  Google Scholar 

  5. Mohr JP, Thompson JL, Lazar RM, Levin B, Sacco RL, Furie KL et al (2001) A comparison of warfarin and aspirin for the prevention of recurrent ischemic stroke. N Engl J Med 345:1444–1451

    Article  CAS  PubMed  Google Scholar 

  6. Bang OY, Lee PH, Joo SY, Lee JS, Joo IS, Huh K (2003) Frequency and mechanisms of stroke recurrence after cryptogenic stroke. Ann Neurol 54:227–234

    Article  PubMed  Google Scholar 

  7. Kronzon I, Tunick PA (2006) Aortic atherosclerotic disease and stroke. Circulation 114:63–75

    Article  PubMed  Google Scholar 

  8. Amarenco P, Cohen A, Tzourio C, Bertrand B, Hommel M, Besson G et al (1994) Atherosclerotic disease of the aortic arch and the risk of ischemic stroke. N Engl J Med 331:1474–1479

    Article  CAS  PubMed  Google Scholar 

  9. Reimold SC, Maier SE, Aggarwal K, Fleischmann KE, Piwnica-Worms D, Kikinis R et al (1996) Aortic flow velocity patterns in chronic aortic regurgitation: implications for Doppler echocardiography. J Am Soc Echocardiogr 9:675–683

    Article  CAS  PubMed  Google Scholar 

  10. Bogren HG, Mohiaddin RH, Kilner PJ, Jimenez-Borreguero LJ, Yang GZ, Firmin DN (1997) Blood flow patterns in the thoracic aorta studied with three-directional MR velocity mapping: the effects of age and coronary artery disease. J Magn Reson Imaging 7:784–793

    Article  CAS  PubMed  Google Scholar 

  11. Bogren HG, Buonocore MH, Valente RJ (2004) Four-dimensional magnetic resonance velocity mapping of blood flow patterns in the aorta in patients with atherosclerotic coronary artery disease compared to age-matched normal subjects. J Magn Reson Imaging 19:417–427

    Article  PubMed  Google Scholar 

  12. Harloff A, Strecker C, Frydrychowicz AP, Dudler P, Hetzel A, Geibel A et al (2007) Plaques in the descending aorta: a new risk factor for stroke? Visualization of potential embolization pathways by 4D MRI. J Magn Reson Imaging 26:1651–1655

    Article  PubMed  Google Scholar 

  13. Ebbers T (2011) Flow imaging: cardiac applications of 3D cine phase-contrast MRI. Curr Cardiovasc Imaging Rep 4:127–133

    Article  Google Scholar 

  14. Markl M, Kilner PJ, Ebbers T (2011) Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 13:7

    Article  PubMed  PubMed Central  Google Scholar 

  15. Frydrychowicz A, Francois CJ, Turski PA (2011) Four-dimensional phase contrast magnetic resonance angiography: potential clinical applications. Eur J Radiol

  16. Markl M, Frydrychowicz A, Kozerke S, Hope M, Wieben O (2012) 4D flow MRI. J Magn Reson Imaging 36:1015–1036

    Article  PubMed  Google Scholar 

  17. Hope MD, Sedlic T, Dyverfeldt P (2013) Cardiothoracic magnetic resonance flow imaging. J Thorac Imaging 28:217–230

    Article  PubMed  Google Scholar 

  18. Stankovic Z, Allen BD, Garcia J, Jarvis KB, Markl M (2014) 4D flow imaging with MRI. Cardiovasc Diagn Ther 4:173–192

    PubMed  PubMed Central  Google Scholar 

  19. Harloff A, Strecker C, Dudler P, Nussbaumer A, Frydrychowicz A, Olschewski M et al (2009) Retrograde embolism from the descending aorta: visualization by multidirectional 3D velocity mapping in cryptogenic stroke. Stroke 40:1505–1508

    Article  PubMed  Google Scholar 

  20. Harloff A, Simon J, Brendecke S, Assefa D, Helbing T, Frydrychowicz A et al (2010) Complex plaques in the proximal descending aorta: an underestimated embolic source of stroke. Stroke 41:1145–1150

    Article  PubMed  Google Scholar 

  21. Adams HP Jr, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL et al (1993) Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 24:35–41

    Article  PubMed  Google Scholar 

  22. Markl M, Harloff A, Bley TA, Zaitsev M, Jung B, Weigang E et al (2007) Time-resolved 3D MR velocity mapping at 3T: improved navigator-gated assessment of vascular anatomy and blood flow. J Magn Reson Imaging 25:824–831

    Article  PubMed  Google Scholar 

  23. Bock J, Kreher B, Hennig J, Markl M. Optimized pre-processing of time-resolved 2D and 3D phase contrast MRI data. Proceedings of the 15th Annual Meeting of ISMRM, Berlin, Germany. 2007:3138.

  24. Hashimoto J, Ito S (2013) Aortic stiffness determines diastolic blood flow reversal in the descending thoracic aorta: potential implication for retrograde embolic stroke in hypertension. Hypertension 62:542–549

    Article  CAS  PubMed  Google Scholar 

  25. Wehrum T, Kams M, Strecker C, Dragonu I, Gunther F, Geibel A et al (2014) Prevalence of potential retrograde embolization pathways in the proximal descending aorta in stroke patients and controls. Cerebrovasc Dis 38:410–417

    Article  PubMed  Google Scholar 

  26. Bell R, Severson MA 3rd, Armonda RA (2009) Neurovascular anatomy: a practical guide. Neurosurg Clin N Am 20:265–278

    Article  PubMed  Google Scholar 

  27. Dimmick SJ, Faulder KC (2009) Normal variants of the cerebral circulation at multidetector CT angiography. Radiogr: Rev Publ Radiol Soc North Am Inc 29:1027–1043

    Article  Google Scholar 

  28. Iqbal S (2013) A comprehensive study of the anatomical variations of the circle of willis in adult human brains. J Clin Diagn Res: JCDR 7:2423–2427

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Janic M, Lunder M, Sabovic M (2014) Arterial stiffness and cardiovascular therapy. Biomed Res Int 2014:621437

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Markl.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Michael Markl.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Funding

This study has received funding through NIH NHLBI grant R21 HL132357.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Ethical approval

Institutional Review Board approval was obtained.

Study subjects or cohorts overlap

Written informed consent was waived by the Institutional Review Board.

Methodology

• retrospective

• cross-sectional study

• performed at one institution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markl, M., Semaan, E., Stromberg, L. et al. Importance of variants in cerebrovascular anatomy for potential retrograde embolization in cryptogenic stroke. Eur Radiol 27, 4145–4152 (2017). https://doi.org/10.1007/s00330-017-4821-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-017-4821-0

Keywords

Navigation