Skip to main content
Log in

Microanatomy of the subcallosal artery: an in-vivo 7 T magnetic resonance angiography study

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To investigate in-vivo microanatomy of the subcallosal artery branching from the anterior communicating artery (ACoA) using time-of-flight (TOF) magnetic resonance angiography (MRA) at 7 Tesla.

Methods

Seventy-five subjects, including 15 healthy volunteers and 60 patients, were included in this prospective study. Three raters characterized branches from ACoA in maximum intensity projections of TOF MRA at 7 Tesla acquired with 0.22 × 0.22 × 0.41 mm3 resolution. Furthermore, course patterns and anatomical features of the subcallosal artery (maximum diameter, length, and branching angle from ACoA) were measured.

Results

Branches from the anterior communicating artery were visualized in 63 of 74 (85.1 %) subjects and were identified as the subcallosal artery (93.7 %) and the accessory anterior cerebral artery (6.3 %). The course of the subcallosal artery was classified into 3 groups; C-shaped (55.9 %), straight (16.9 %), and S-shaped (27.2 %). There was a significant difference between the branching angles of C-shaped and straight (p < 0.0001), between C-shaped and S-shaped (p < 0.0001), as well as between straight and S-shaped (p = 0.0113) course patterns.

Conclusions

High-resolution in-vivo 7 T TOF MRA can delineate the microanatomy of the subcallosal artery. Three main variants of course patterns and branching angles from ACoA could be identified.

Key Points

In-vivo 7 Tesla TOF MRA can delineate the subcallosal artery microanatomy

Three distinct course patterns of the subcallosal artery were identified

Branching angles from ACoA significantly differed between subcallosal artery course patterns

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Windle BC (1888) The arteries forming the circle of Willis. J Anat Physiol 22:289–293

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Senior H (1923) The blood vascular system. In: Morris H (ed) Human anatomy. Blakiston's Son, Philadelphia

    Google Scholar 

  3. Rubinstein HS (1944) The anterior communicating artery in man. J Neuropathol Exp Neurol 3:196–198

    Article  Google Scholar 

  4. Krayenbühl HA, Yasargil MG (1968) Radiological anatomy and topography of the cerebral vessels. In: Cerebral angiography, 2nd edn. J.B. Lippincott, Philadelphia, pp 20–84

    Google Scholar 

  5. Baptista AG (1963) Studies on the arteries of the brain. II. The anterior cerebral artery: some anatomic features and their clinical implications. Neurology 13:825–835

    Article  CAS  PubMed  Google Scholar 

  6. Marino R (1976) The anterior cerebral artery: I. Anatomo-radiological study of its cortical territories. Surg Neurol 5:81–87

    PubMed  Google Scholar 

  7. Perlmutter D, Rhoton AL Jr (1976) Microsurgical anatomy of the anterior cerebral-anterior communicating-recurrent artery complex. J Neurosurg 45:259–272

    Article  CAS  PubMed  Google Scholar 

  8. Yasargil MG, Smith RD, Young PH, Teddy PJ (1984) Anterior cerebral artery complex. In: Microneurosurgery, vol 1. Georg Thieme Verlag, Stuttgart, pp 92–128

    Google Scholar 

  9. Crowell RM, Morawetz RB (1977) The anterior communicating artery has significant branches. Stroke 8:272–273

    Article  CAS  PubMed  Google Scholar 

  10. Vincentelli F, Lehman G, Caruso G, Grisoli F, Rabehanta P, Gouaze A (1991) Extracerebral course of the perforating branches of the anterior communicating artery: microsurgical anatomical study. Surg Neurol 35:98–104

    Article  CAS  PubMed  Google Scholar 

  11. Marinkovic S, Milisavljevic M, Marinkovic Z (1990) Branches of the anterior communicating artery. Microsurgical anatomy. Acta Neurochir (Wien) 106:78–85

    Article  CAS  Google Scholar 

  12. Ture U, Yasargil MG, Krisht AF (1996) The arteries of the corpus callosum: a microsurgical anatomic study. Neurosurgery 39:1075–1084, discussion 1084-1075

    Article  CAS  PubMed  Google Scholar 

  13. Serizawa T, Saeki N, Yamaura A (1997) Microsurgical anatomy and clinical significance of the anterior communicating artery and its perforating branches. Neurosurgery 40:1211–1216, discussion 1216-1218

    Article  CAS  PubMed  Google Scholar 

  14. Morioka M, Fujioka S, Itoyama Y, Ushio Y (1997) Ruptured distal accessory anterior cerebral artery aneurysm: case report. Neurosurgery 40:399–401, discussion 401-392

    Article  CAS  PubMed  Google Scholar 

  15. Rhoton AL Jr (2002) Aneurysms. Neurosurgery 51:S121–S158

    PubMed  Google Scholar 

  16. Hattingen E, Rathert J, Raabe A, Anjorin A, Lanfermann H, Weidauer S (2007) Diffusion tensor tracking of fornix infarction. J Neurol Neurosurg Psychiatry 78:655–656

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mugikura S, Kikuchi H, Fujii T et al (2014) MR imaging of subcallosal artery infarct causing amnesia after surgery for anterior communicating artery aneurysm. Am J Neuroradiol 35:2293–2301

    Article  CAS  PubMed  Google Scholar 

  18. Yasargil MG, Smith RD, Young PH, Teddy PJ (1984) Anterior cerebral and anterior communicating artery aneurysms. In: Microneurosurgery. vol 2. Stuttgart, Georg Thieme Verlag, 165–231

  19. Chan A, Ho S, Poon WS (2002) Neuropsychological sequelae of patients treated with microsurgical clipping or endovascular embolization for anterior communicating artery aneurysm. Eur Neurol 47:37–44

    Article  PubMed  Google Scholar 

  20. Meila D, Saliou G, Krings T (2015) Subcallosal artery stroke: infarction of the fornix and the genu of the corpus callosum. The importance of the anterior communicating artery complex. Case series and review of the literature. Neuroradiology 57:41–47

    Article  PubMed  Google Scholar 

  21. Mortimer AM, Steinfort B, Faulder K et al (2015) Rates of local procedural-related structural injury following clipping or coiling of anterior communicating artery aneurysms. J Neurointerv Surg. doi:10.1136/neurintsurg-2014-011620

    Google Scholar 

  22. Johst S, Wrede KH, Ladd ME, Maderwald S (2012) Time-of-flight magnetic resonance angiography at 7 T using venous saturation pulses with reduced flip angles. Investig Radiol 47:445–450

    Article  Google Scholar 

  23. Wrede KH, Johst S, Dammann P et al (2014) Improved cerebral time-of-flight magnetic resonance angiography at 7 Tesla-feasibility study and preliminary results using optimized venous saturation pulses. PLoS One 9, e106697, http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0106697

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wrede KH, Dammann P, Johst S et al (2015) Non-enhanced MR imaging of cerebral arteriovenous malformations at 7 Tesla. Eur Radiol. doi:10.1007/s00330-015-3875-0

    Google Scholar 

  25. Cho ZH, Kang CK, Han JY et al (2008) Observation of the lenticulostriate arteries in the human brain in vivo using 7.0 T MR angiography. Stroke 39:1604–1606

    Article  PubMed  Google Scholar 

  26. Hendrikse J, Zwanenburg JJ, Visser F, Takahara T, Luijten P (2008) Noninvasive depiction of the lenticulostriate arteries with time-of-flight MR angiography at 7.0 T. Cerebrovasc Dis 26:624–629

    Article  PubMed  Google Scholar 

  27. Liem MK, van der Grond J, Versluis MJ et al (2010) Lenticulostriate arterial lumina are normal in cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy: a high-field in vivo MRI study. Stroke 41:2812–2816

    Article  PubMed  Google Scholar 

  28. Harteveld AA, De Cocker LJ, Dieleman N et al (2015) High-resolution postcontrast time-of-flight MR angiography of intracranial perforators at 7.0 Tesla. PLoS One 10, e0121051, http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0121051

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Lena C. Schäfer (RT) for performing all the 7 Tesla examinations. The scientific guarantor of this publication is Dr. Karsten H Wrede. The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. This study has received funding by University Duisburg Essen (IFORES grant). No complex statistical methods were necessary for this paper. Institutional Review Board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. Methodology: prospective, observational, multicenter study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshinori Matsushige.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsushige, T., Chen, B., Dammann, P. et al. Microanatomy of the subcallosal artery: an in-vivo 7 T magnetic resonance angiography study. Eur Radiol 26, 2908–2914 (2016). https://doi.org/10.1007/s00330-015-4117-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-015-4117-1

Keywords

Navigation