Skip to main content
Log in

Assessment of renal allograft function early after transplantation with isotropic resolution diffusion tensor imaging

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To investigate the value of diffusion tensor imaging (DTI) and tractography in renal allografts at the early stage after kidney transplantation.

Methods

This study was approved by the institutional ethical review committee, and written informed consent was obtained. A total of 54 renal allograft recipients 2–3 weeks after transplantation and 26 age-matched healthy volunteers underwent renal DTI with a 3.0-T magnetic resonance imaging (MRI) system. Recipients were divided into three groups according to the estimated glomerular filtration rate (eGFR). Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) of the cortex and medulla were measured and compared among the groups. Whole-kidney tractography was performed. Correlation of eGFR with diffusion parameters was evaluated.

Results

In allografts with stable function, the medullary ADC was higher and the cortical FA was lower (p < 0.001) than in healthy kidneys. The cortical ADC, medullary ADC and FA decreased as the allograft function declined, and with a positive correlation with eGFR (p < 0.001); cortical FA did not. Tractography demonstrated a decrease of tract density in impaired functional allografts.

Conclusions

Renal DTI produces reliable results to assess renal allograft function at the early stage after transplantation.

Key Points

DTI and tractography can evaluate renal allograft function at an early stage

Medullary FA, cortical and medullary ADC can effectively evaluate allograft function

Medullary FA, cortical and medullary ADC are correlated with eGFR in renal allografts

Medullary ADC increased and cortical FA decreased in stable allografts compared to control subjects

Medullary FA, cortical and medullary ADC decreased and allograft function declined

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jiang SH, Karpe KM, Talaulikar GS (2011) Safety and predictors of complications of renal biopsy in the outpatient setting. Clin Nephrol 76:464–469

    Article  PubMed  CAS  Google Scholar 

  2. Kataoka M, Kido A, Yamamoto A et al (2009) Diffusion tensor imaging of kidneys with respiratory triggering: optimization of parameters to demonstrate anisotropic structures on fraction anisotropy maps. J Magn Reson Imaging 29:736–744

    Article  PubMed  Google Scholar 

  3. Kido A, Kataoka M, Yamamoto A et al (2010) Diffusion tensor MRI of the kidney at 3.0 and 1.5 Tesla. Acta Radiol 51:1059–1063

    Article  PubMed  Google Scholar 

  4. Cutajar M, Clayden JD, Clark CA, Gordon I (2011) Test-retest reliability and repeatability of renal diffusion tensor MRI in healthy subjects. Eur J Radiol 80:e263–e268

    Article  PubMed  Google Scholar 

  5. Wang WJ, Pui MH, Guo Y, Hu XS, Wang HJ, Yang D (2014) MR diffusion tensor imaging of normal kidneys. J Magn Reson Imaging 40:1099–1102

    Article  PubMed  Google Scholar 

  6. Gurses B, Kilickesmez O, Tasdelen N, Firat Z, Gurmen N (2011) Diffusion tensor imaging of the kidney at 3 Tesla MRI: normative values and repeatability of measurements in healthy volunteers. Diagn Interv Radiol 17:317–322

    PubMed  Google Scholar 

  7. Ries M, Jones RA, Basseau F, Moonen CT, Grenier N (2001) Diffusion tensor MRI of the human kidney. J Magn Reson Imaging 14:42–49

    Article  PubMed  CAS  Google Scholar 

  8. Seif M, Lu H, Boesch C, Reyes M, Vermathen P (2015) Image registration for triggered and non-triggered DTI of the human kidney: reduced variability of diffusion parameter estimation. J Magn Reson Imaging 41:1228–1235

    Article  PubMed  Google Scholar 

  9. Notohamiprodjo M, Chandarana H, Mikheev A et al (2015) Combined intravoxel incoherent motion and diffusion tensor imaging of renal diffusion and flow anisotropy. Magn Reson Med 73:1526–1532

    Article  PubMed  Google Scholar 

  10. Lu L, Sedor JR, Gulani V et al (2011) Use of diffusion tensor MRI to identify early changes in diabetic nephropathy. Am J Nephrol 34:476–482

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gaudiano C, Clementi V, Busato F et al (2013) Diffusion tensor imaging and tractography of the kidneys: assessment of chronic parenchymal diseases. Eur Radiol 23:1678–1685

    Article  PubMed  Google Scholar 

  12. Wang WJ, Pui MH, Guo Y, Wang LQ, Wang HJ, Liu M (2014) 3T magnetic resonance diffusion tensor imaging in chronic kidney disease. Abdom Imaging 39:770–775

    Article  PubMed  Google Scholar 

  13. Gaudiano C, Clementi V, Busato F et al (2011) Renal diffusion tensor imaging: is it possible to define the tubular pathway? A case report. Magn Reson Imaging 29:1030–1033

    Article  PubMed  Google Scholar 

  14. Notohamiprodjo M, Glaser C, Herrmann KA et al (2008) Diffusion tensor imaging of the kidney with parallel imaging: initial clinical experience. Investig Radiol 43:677–685

    Article  Google Scholar 

  15. Feng Q, Ma Z, Wu J, Fang W (2015) DTI for the assessment of disease stage in patients with glomerulonephritis–correlation with renal histology. Eur Radiol 25:92–98

    Article  PubMed  Google Scholar 

  16. Liu Z, Xu Y, Zhang J et al (2015) Chronic kidney disease: pathological and functional assessment with diffusion tensor imaging at 3T MR. Eur Radiol 25:652–660

    Article  PubMed  Google Scholar 

  17. Hueper K, Gutberlet M, Rodt T et al (2011) Diffusion tensor imaging and tractography for assessment of renal allograft dysfunction-initial results. Eur Radiol 21:2427–2433

    Article  PubMed  Google Scholar 

  18. Lanzman RS, Ljimani A, Pentang G et al (2013) Kidney transplant: functional assessment with diffusion-tensor MR imaging at 3T. Radiology 266:218–225

    Article  PubMed  Google Scholar 

  19. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 130:461–470

    Article  PubMed  CAS  Google Scholar 

  20. National Kidney Foundation (2002) K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 39:S1–S266

    Google Scholar 

  21. Wang R, Benner T, Sorensen AG, Wedeen VJ (2007) Diffusion Toolkit: a software package for diffusion imaging data processing and tractography. Proc Intl Soc Mag Reson Med 15:3720

  22. Heusch P, Wittsack HJ, Kropil P et al (2013) Impact of blood flow on diffusion coefficients of the human kidney: a time-resolved ECG-triggered diffusion-tensor imaging (DTI) study at 3T. J Magn Reson Imaging 37:233–236

    Article  PubMed  Google Scholar 

  23. Sigmund EE, Vivier PH, Sui D et al (2012) Intravoxel incoherent motion and diffusion-tensor imaging in renal tissue under hydration and furosemide flow challenges. Radiology 263:758–769

    Article  PubMed  Google Scholar 

  24. Oouchi H, Yamada K, Sakai K et al (2007) Diffusion anisotropy measurement of brain white matter is affected by voxel size: underestimation occurs in areas with crossing fibers. AJNR Am J Neuroradiol 28:1102–1106

    Article  PubMed  CAS  Google Scholar 

  25. Rane S, Nair G, Duong TQ (2010) DTI at long diffusion time improves fiber tracking. NMR Biomed 23:459–465

    Article  PubMed  PubMed Central  Google Scholar 

  26. Qin W, Yu CS, Zhang F et al (2009) Effects of echo time on diffusion quantification of brain white matter at 1.5 T and 3.0 T. Magn Reson Med 61:755–760

    Article  PubMed  Google Scholar 

  27. Chuck NC, Steidle G, Blume I, Fischer MA, Nanz D, Boss A (2013) Diffusion tensor imaging of the kidneys: influence of b-value and number of encoding directions on image quality and diffusion tensor parameters. J Clin Imaging Sci 3:53

    Article  PubMed  PubMed Central  Google Scholar 

  28. Thoeny HC, Zumstein D, Simon-Zoula S et al (2006) Functional evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging: initial experience. Radiology 241:812–821

    Article  PubMed  Google Scholar 

  29. Thoeny HC, De Keyzer F (2011) Diffusion-weighted MR imaging of native and transplanted kidneys. Radiology 259:25–38

    Article  PubMed  Google Scholar 

  30. Rheinheimer S, Schneider F, Stieltjes B et al (2012) IVIM-DWI of transplanted kidneys: reduced diffusion and perfusion dependent on cold ischemia time. Eur J Radiol 81:e951–e956

    Article  PubMed  CAS  Google Scholar 

  31. Eisenberger U, Binser T, Thoeny HC, Boesch C, Frey FJ, Vermathen P (2014) Living renal allograft transplantation: diffusion-weighted MR imaging in longitudinal follow-up of the donated and the remaining kidney. Radiology 270:800–808

    Article  PubMed  Google Scholar 

  32. Eisenberger U, Thoeny HC, Binser T et al (2010) Evaluation of renal allograft function early after transplantation with diffusion-weighted MR imaging. Eur Radiol 20:1374–1383

    Article  PubMed  Google Scholar 

  33. Ichikawa S, Motosugi U, Ichikawa T, Sano K, Morisaka H, Araki T (2013) Intravoxel incoherent motion imaging of the kidney: alterations in diffusion and perfusion in patients with renal dysfunction. Magn Reson Imaging 31:414–417

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is Dr. Wen Shen from the Department of Radiology, Tianjin First Central Hospital. Dr. Pan-Li Zuo declares a relationship with the following company: Siemens Healthcare. The authors state that this work has not received any funding. No complex statistical methods were necessary for this paper. Institutional review board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. Methodology: retrospective, experimental study, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Wj., Ren, T., Li, Q. et al. Assessment of renal allograft function early after transplantation with isotropic resolution diffusion tensor imaging. Eur Radiol 26, 567–575 (2016). https://doi.org/10.1007/s00330-015-3841-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-015-3841-x

Keywords

Navigation