Skip to main content

Advertisement

Log in

Neuroimaging of dementia in 2013: what radiologists need to know

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The structural and functional neuroimaging of dementia have substantially evolved over the last few years. The most common forms of dementia, Alzheimer disease (AD), Lewy body dementia (LBD) and fronto-temporal lobar degeneration (FTLD), have distinct patterns of cortical atrophy and hypometabolism that evolve over time, as reviewed in the first part of this article. The second part discusses unspecific white matter alterations on T2-weighted and fluid-attenuated inversion recovery (FLAIR) images as well as cerebral microbleeds, which often occur during normal aging and may affect cognition. The third part summarises molecular neuroimaging biomarkers recently developed to visualise amyloid deposits, tau protein deposits and neurotransmitter systems. The fourth section reviews the utility of advanced image analysis techniques as predictive biomarkers of cognitive decline in individuals with early symptoms compatible with mild cognitive impairment (MCI). As only about half of MCI cases will progress to clinically overt dementia, whereas the other half remain stable or might even improve, the discrimination of stable versus progressive MCI is of paramount importance for both individual patient treatment and patient selection for clinical trials. The fifth and final part discusses the inter-individual variation in the neurocognitive reserve, which is a potential constraint for all proposed methods.

Key Points

• Many forms of dementia have spatial atrophy patterns detectable on neuroimaging.

• Early treatment of dementia is beneficial, indicating the need for early diagnosis.

• Advanced image analysis techniques detect subtle anomalies invisible on radiological evaluation.

• Inter-individual variation explains variable cognitive impairment despite the same degree of atrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AD:

Alzheimer disease

CAA:

cerebral amyloid angiopathy

CBD:

cortico-basal degeneration

CBS:

cortico-basal syndrome

CMB:

cerebral microbleeds

CMH:

cerebral microhaemorrhages

DAI:

diffuse axonal injury

CBD:

corticobasal degeneration

DLB:

dementia with Lewy bodies

DTI:

diffusion tensor imaging

FDG:

18F-fluorodeoxyglucose

FLAIR:

fluid-attenuated inversion recovery

FTD:

fronto-temporal dementia

FTLD:

fronto-temporal lobar degeneration

GM:

grey matter

GRE:

gradient-echo

LPA:

logopaenic aphasia

MCI:

mild cognitive impairment

NBIA:

neurodegeneration with brain iron accumulation

PCA:

posterior cortical atrophy

PiB:

11C-Pittsburgh compound B

PiD:

Pick’s disease

PET:

positron emission tomography

PNFA:

progressive non-fluent aphasia

PPA:

primary progressive aphasia

PSP:

progressive supranuclear palsy

SD:

semantic dementia

SPECT:

single photon emission computed tomography

SVM:

support vector machine

SWI:

susceptibility-weighted imaging

TBSS:

tract-based spatial statistics

UBO:

unspecific bright object

VaD:

vascular dementia

VBM:

voxel-based analysis

WM:

white matter

References

  1. Lazarczyk MJ, Hof PR, Bouras C et al (2012) Preclinical Alzheimer disease: identification of cases at risk among cognitively intact older individuals. BMC Med 10:127

    Article  PubMed  Google Scholar 

  2. Chetelat G, Desgranges B, Landeau B et al (2008) Direct voxel-based comparison between grey matter hypometabolism and atrophy in Alzheimer's disease. Brain 131:60–71

    Article  PubMed  CAS  Google Scholar 

  3. Lim SM, Katsifis A, Villemagne VL et al (2009) The 18F-FDG PET cingulate island sign and comparison to 123I-beta-CIT SPECT for diagnosis of dementia with Lewy bodies. J Nucl Med 50:1638–1645

    Article  PubMed  CAS  Google Scholar 

  4. McKeith I, O'Brien J, Walker Z et al (2007) Sensitivity and specificity of dopamine transporter imaging with 123I-FP-CIT SPECT in dementia with Lewy bodies: a phase III, multicentre study. Lancet Neurol 6:305–313

    Article  PubMed  Google Scholar 

  5. Rohrer JD (2012) Structural brain imaging in frontotemporal dementia. Biochim Biophys Acta 1822:325–332

    Article  PubMed  CAS  Google Scholar 

  6. Gorno-Tempini ML, Dronkers NF, Rankin KP et al (2004) Cognition and anatomy in three variants of primary progressive aphasia. Ann Neurol 55:335–346

    Article  PubMed  Google Scholar 

  7. Gorno-Tempini ML, Hillis AE, Weintraub S et al (2011) Classification of primary progressive aphasia and its variants. Neurology 76:1006–1014

    Article  PubMed  Google Scholar 

  8. Rohrer JD, Ridgway GR, Crutch SJ et al (2010) Progressive logopenic/phonological aphasia: erosion of the language network. NeuroImage 49:984–993

    Article  PubMed  Google Scholar 

  9. Rabinovici GD, Jagust WJ, Furst AJ et al (2008) Abeta amyloid and glucose metabolism in three variants of primary progressive aphasia. Ann Neurol 64:388–401

    Article  PubMed  Google Scholar 

  10. Lindberg O, Ostberg P, Zandbelt BB et al (2009) Cortical morphometric subclassification of frontotemporal lobar degeneration. AJNR Am J Neuroradiol 30:1233–1239

    Article  PubMed  CAS  Google Scholar 

  11. Groschel K, Kastrup A, Litvan I et al (2006) Penguins and hummingbirds: midbrain atrophy in progressive supranuclear palsy. Neurology 66:949–950

    Article  PubMed  Google Scholar 

  12. Quattrone A, Nicoletti G, Messina D et al (2008) MR imaging index for differentiation of progressive supranuclear palsy from Parkinson disease and the Parkinson variant of multiple system atrophy. Radiology 246:214–221

    Article  PubMed  Google Scholar 

  13. Hayflick SJ, Hartman M, Coryell J et al (2006) Brain MRI in neurodegeneration with brain iron accumulation with and without PANK2 mutations. AJNR Am J Neuroradiol 27:1230–1233

    PubMed  CAS  Google Scholar 

  14. Garde E, Mortensen EL, Krabbe K et al (2000) Relation between age-related decline in intelligence and cerebral white-matter hyperintensities in healthy octogenarians: a longitudinal study. Lancet 356:628–634

    Article  PubMed  CAS  Google Scholar 

  15. Ylikoski A, Erkinjuntti T, Raininko R et al (1995) White matter hyperintensities on MRI in the neurologically nondiseased elderly. Analysis of cohorts of consecutive subjects aged 55 to 85 years living at home. Stroke 26:1171–1177

    Article  PubMed  CAS  Google Scholar 

  16. Debette S, Markus HS (2010) The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 341:c3666

    Article  PubMed  Google Scholar 

  17. Inzitari D, Simoni M, Pracucci G et al (2007) Risk of rapid global functional decline in elderly patients with severe cerebral age-related white matter changes: the LADIS study. Arch Intern Med 167:81–88

    Article  PubMed  Google Scholar 

  18. Murray AD, Staff RT, McNeil CJ et al (2011) The balance between cognitive reserve and brain imaging biomarkers of cerebrovascular and Alzheimer's diseases. Brain 134:3687–3696

    Article  PubMed  Google Scholar 

  19. Young VG, Halliday GM, Kril JJ (2008) Neuropathologic correlates of white matter hyperintensities. Neurology 71:804–811

    Article  PubMed  Google Scholar 

  20. Gouw AA, Seewann A, van der Flier WM et al (2011) Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations. J Neurol Neurosurg Psychiatry 82:126–135

    Article  PubMed  Google Scholar 

  21. Pantoni L, Garcia JH (1997) Pathogenesis of leukoaraiosis: a review. Stroke 28:652–659

    Article  PubMed  CAS  Google Scholar 

  22. Fazekas F, Kleinert R, Offenbacher H et al (1993) Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology 43:1683–1689

    Article  PubMed  CAS  Google Scholar 

  23. Grafton ST, Sumi SM, Stimac GK et al (1991) Comparison of postmortem magnetic resonance imaging and neuropathologic findings in the cerebral white matter. Arch Neurol 48:293–298

    Article  PubMed  CAS  Google Scholar 

  24. van Swieten JC, van den Hout JH, van Ketel BA et al (1991) Periventricular lesions in the white matter on magnetic resonance imaging in the elderly. A morphometric correlation with arteriolosclerosis and dilated perivascular spaces. Brain 114:761–774

    Article  PubMed  Google Scholar 

  25. Haller S, Kovari E, Herrmann FR et al (2013) Do brain T2/FLAIR white matter hyperintensities correspond to myelin loss in normal aging? A radiologic-neuropathologic correlation study. Acta Neuropathologica Commun 1:14

    Article  Google Scholar 

  26. Topakian R, Barrick TR, Howe FA et al (2010) Blood-brain barrier permeability is increased in normal-appearing white matter in patients with lacunar stroke and leucoaraiosis. J Neurol Neurosurg Psychiatry 81:192–197

    Article  PubMed  CAS  Google Scholar 

  27. de Groot JC, de Leeuw FE, Oudkerk M et al (2000) Cerebral white matter lesions and depressive symptoms in elderly adults. Arch Gen Psychiatry 57:1071–1076

    Article  PubMed  Google Scholar 

  28. Greenberg SM, Vernooij MW, Cordonnier C et al (2009) Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 8:165–174

    Article  PubMed  Google Scholar 

  29. Goos JD, van der Flier WM, Knol DL et al (2011) Clinical relevance of improved microbleed detection by susceptibility-weighted magnetic resonance imaging. Stroke 42:1894–1900

    Article  PubMed  Google Scholar 

  30. Cordonnier C, van der Flier WM, Sluimer JD et al (2006) Prevalence and severity of microbleeds in a memory clinic setting. Neurology 66:1356–1360

    Article  PubMed  CAS  Google Scholar 

  31. Cordonnier C, Al-Shahi Salman R, Wardlaw J (2007) Spontaneous brain microbleeds: systematic review, subgroup analyses and standards for study design and reporting. Brain 130:1988–2003

    Article  PubMed  Google Scholar 

  32. Nandigam RN, Viswanathan A, Delgado P et al (2009) MR imaging detection of cerebral microbleeds: effect of susceptibility-weighted imaging, section thickness, and field strength. AJNR Am J Neuroradiol 30:338–343

    Article  PubMed  CAS  Google Scholar 

  33. Ayaz M, Boikov AS, Haacke EM et al (2010) Imaging cerebral microbleeds using susceptibility weighted imaging: one step toward detecting vascular dementia. J Magn Reson Imaging 31:142–148

    Article  PubMed  Google Scholar 

  34. Kirsch W, McAuley G, Holshouser B et al (2009) Serial susceptibility weighted MRI measures brain iron and microbleeds in dementia. J Alzheimers Dis 17:599–609

    PubMed  CAS  Google Scholar 

  35. Haller S, Bartsch A, Nguyen D et al (2010) Cerebral microhemorrhage and iron deposition in mild cognitive impairment: susceptibility-weighted MR imaging assessment. Radiology 257:764–773

    Article  PubMed  Google Scholar 

  36. Uetani H, Hirai T, Hashimoto M et al (2013) Prevalence and topography of small hypointense foci suggesting microbleeds on 3T susceptibility-weighted imaging in various types of dementia. AJNR Am J Neuroradiol 34:984–989

    Article  PubMed  CAS  Google Scholar 

  37. Gold G, Giannakopoulos P, Herrmann FR et al (2007) Identification of Alzheimer and vascular lesion thresholds for mixed dementia. Brain 130:2830–2836

    Article  PubMed  Google Scholar 

  38. Fisher M, French S, Ji P et al (2010) Cerebral microbleeds in the elderly: a pathological analysis. Stroke 41:2782–2785

    Article  PubMed  Google Scholar 

  39. Tanskanen M, Makela M, Myllykangas L et al (2012) Intracerebral hemorrhage in the oldest old: a population-based study (vantaa 85+). Front Neurol 3:103

    Article  PubMed  Google Scholar 

  40. Fazekas F, Kleinert R, Roob G et al (1999) Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. AJNR Am J Neuroradiol 20:637–642

    PubMed  CAS  Google Scholar 

  41. Schrag M, McAuley G, Pomakian J et al (2010) Correlation of hypointensities in susceptibility-weighted images to tissue histology in dementia patients with cerebral amyloid angiopathy: a postmortem MRI study. Acta Neuropathol 119:291–302

    Article  PubMed  Google Scholar 

  42. Tatsumi S, Shinohara M, Yamamoto T (2008) Direct comparison of histology of microbleeds with postmortem MR images: a case report. Cerebrovasc Dis 26:142–146

    Article  PubMed  Google Scholar 

  43. Torosyan N, Silverman DH (2012) Neuronuclear imaging in the evaluation of dementia and mild decline in cognition. Semin Nucl Med 42:415–422

    Article  PubMed  Google Scholar 

  44. Klunk WE, Engler H, Nordberg A et al (2004) Imaging brain amyloid in Alzheimer's disease with Pittsburgh compound-B. Ann Neurol 55:306–319

    Article  PubMed  CAS  Google Scholar 

  45. Nordberg A (2011) Molecular imaging in Alzheimer's disease: new perspectives on biomarkers for early diagnosis and drug development. Alzheimers Res Ther 3:34

    Article  PubMed  CAS  Google Scholar 

  46. Clark CM, Schneider JA, Bedell BJ et al (2011) Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA 305:275–283

    Article  PubMed  CAS  Google Scholar 

  47. Aizenstein HJ, Nebes RD, Saxton JA et al (2008) Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch Neurol 65:1509–1517

    Article  PubMed  Google Scholar 

  48. Chetelat G, Villemagne VL, Pike KE et al (2011) Independent contribution of temporal beta-amyloid deposition to memory decline in the pre-dementia phase of Alzheimer's disease. Brain 134:798–807

    Article  PubMed  Google Scholar 

  49. Nordberg A, Carter SF, Rinne J et al (2013) A European multicentre PET study of fibrillar amyloid in Alzheimer's disease. Eur J Nucl Med Mol Imaging 40:104–114

    Article  PubMed  CAS  Google Scholar 

  50. Rowe CC, Ng S, Ackermann U et al (2007) Imaging beta-amyloid burden in aging and dementia. Neurology 68:1718–1725

    Article  PubMed  CAS  Google Scholar 

  51. Small GW, Kepe V, Ercoli LM et al (2006) PET of brain amyloid and tau in mild cognitive impairment. N Engl J Med 355:2652–2663

    Article  PubMed  CAS  Google Scholar 

  52. Fodero-Tavoletti MT, Okamura N, Furumoto S et al (2011) 18F-THK523: a novel in vivo tau imaging ligand for Alzheimer's disease. Brain 134:1089–1100

    Article  PubMed  Google Scholar 

  53. Cagnin A, Kassiou M, Meikle SR et al (2006) In vivo evidence for microglial activation in neurodegenerative dementia. Acta Neurol Scand Suppl 185:107–114

    Article  PubMed  CAS  Google Scholar 

  54. Iannaccone S, Cerami C, Alessio M et al (2013) In vivo microglia activation in very early dementia with Lewy bodies, comparison with Parkinson's disease. Parkinsonism Relat Disord 19:47–52

    Article  PubMed  CAS  Google Scholar 

  55. Marcone A, Garibotto V, Moresco RM et al (2012) [(11)C]-MP4A PET cholinergic measurements in amnestic mild cognitive impairment, probable Alzheimer's disease, and dementia with Lewy bodies: a Bayesian method and voxel-based analysis. J Alzheimers Dis 31:387–399

    PubMed  CAS  Google Scholar 

  56. Kendziorra K, Wolf H, Meyer PM et al (2011) Decreased cerebral alpha4beta2* nicotinic acetylcholine receptor availability in patients with mild cognitive impairment and Alzheimer's disease assessed with positron emission tomography. Eur J Nucl Med Mol Imaging 38:515–525

    Article  PubMed  CAS  Google Scholar 

  57. Franceschi M, Anchisi D, Pelati O et al (2005) Glucose metabolism and serotonin receptors in the frontotemporal lobe degeneration. Ann Neurol 57:216–225

    Article  PubMed  CAS  Google Scholar 

  58. Nitsch RM, Hock C (2008) Targeting beta-amyloid pathology in Alzheimer's disease with Abeta immunotherapy. Neurotherapeutics 5:415–420

    Article  PubMed  CAS  Google Scholar 

  59. Duara R, Barker W, Loewenstein D et al (2009) The basis for disease-modifying treatments for Alzheimer's disease: the sixth annual mild cognitive impairment symposium. Alzheimers Dement 5:66–74

    Article  PubMed  Google Scholar 

  60. Holmes C, Boche D, Wilkinson D et al (2008) Long-term effects of Abeta42 immunisation in Alzheimer's disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372:216–223

    Article  PubMed  CAS  Google Scholar 

  61. Lannfelt L, Blennow K, Zetterberg H et al (2008) Safety, efficacy, and biomarker findings of PBT2 in targeting Abeta as a modifying therapy for Alzheimer's disease: a phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurol 7:779–786

    Article  PubMed  CAS  Google Scholar 

  62. Petersen RC (2004) Mild cognitive impairment as a diagnostic entity. J Intern Med 256:183–194

    Article  PubMed  CAS  Google Scholar 

  63. Petersen RC, Negash S (2008) Mild cognitive impairment: an overview. CNS Spectr 13:45–53

    PubMed  Google Scholar 

  64. Mariani E, Monastero R, Mecocci P (2007) Mild cognitive impairment: a systematic review. J Alzheimers Dis 12:23–35

    PubMed  Google Scholar 

  65. Forlenza OV, Diniz BS, Nunes PV et al (2009) Diagnostic transitions in mild cognitive impairment subtypes. Int Psychogeriatr 21:1088–1095

    Article  PubMed  Google Scholar 

  66. Mueller SG, Weiner MW, Thal LJ et al (2005) Ways toward an early diagnosis in Alzheimer's disease: the Alzheimer's Disease Neuroimaging Initiative (ADNI). Alzheimers Dement 1:55–66

    Article  PubMed  Google Scholar 

  67. Lovestone S, Francis P, Kloszewska I et al (2009) AddNeuroMed—the European collaboration for the discovery of novel biomarkers for Alzheimer's disease. Ann N Y Acad Sci 1180:36–46

    Article  PubMed  CAS  Google Scholar 

  68. Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. NeuroImage 11:805–821

    Article  PubMed  CAS  Google Scholar 

  69. Scahill RI, Schott JM, Stevens JM et al (2002) Mapping the evolution of regional atrophy in Alzheimer's disease: unbiased analysis of fluid-registered serial MRI. Proc Natl Acad Sci U S A 99:4703–4707

    Article  PubMed  CAS  Google Scholar 

  70. Karas GB, Burton EJ, Rombouts SA et al (2003) A comprehensive study of gray matter loss in patients with Alzheimer's disease using optimized voxel-based morphometry. NeuroImage 18:895–907

    Article  PubMed  CAS  Google Scholar 

  71. Karas GB, Scheltens P, Rombouts SA et al (2004) Global and local gray matter loss in mild cognitive impairment and Alzheimer's disease. NeuroImage 23:708–716

    Article  PubMed  CAS  Google Scholar 

  72. Karas G, Sluimer J, Goekoop R et al (2008) Amnestic mild cognitive impairment: structural MR imaging findings predictive of conversion to Alzheimer disease. AJNR Am J Neuroradiol 29:944–949

    Article  PubMed  CAS  Google Scholar 

  73. Chupin M, Gerardin E, Cuingnet R et al (2009) Fully automatic hippocampus segmentation and classification in Alzheimer's disease and mild cognitive impairment applied on data from ADNI. Hippocampus 19:579–587

    Article  PubMed  Google Scholar 

  74. Holland D, Brewer JB, Hagler DJ et al (2009) Subregional neuroanatomical change as a biomarker for Alzheimer's disease. Proc Natl Acad Sci U S A 106:20954–20959

    Article  PubMed  CAS  Google Scholar 

  75. Smith SM, Jenkinson M, Johansen-Berg H et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 31:1487–1505

    Article  PubMed  Google Scholar 

  76. Damoiseaux JS, Smith SM, Witter MP et al (2009) White matter tract integrity in aging and Alzheimer's disease. Hum Brain Mapp 30:1051–1059

    Article  PubMed  Google Scholar 

  77. Liu Y, Spulber G, Lehtimaki KK et al (2011) Diffusion tensor imaging and tract-based spatial statistics in Alzheimer's disease and mild cognitive impairment. Neurobiol Aging 32(9):1558–1571

    Article  PubMed  Google Scholar 

  78. Teipel SJ, Meindl T, Grinberg L et al (2011) The cholinergic system in mild cognitive impairment and Alzheimer's disease: an in vivo MRI and DTI study. Hum Brain Mapp 32(9):1349–1362

    Article  PubMed  Google Scholar 

  79. Teipel SJ, Pogarell O, Meindl T et al (2009) Regional networks underlying interhemispheric connectivity: an EEG and DTI study in healthy ageing and amnestic mild cognitive impairment. Hum Brain Mapp 30:2098–2119

    Article  PubMed  Google Scholar 

  80. Arenaza-Urquijo EM, Bosch B, Sala-Llonch R et al (2011) Specific anatomic associations between white matter integrity and cognitive reserve in normal and cognitively impaired elders. Am J Geriatr Psychiatry 19:33–42

    Article  PubMed  Google Scholar 

  81. Bosch B, Arenaza-Urquijo EM, Rami L et al (2012) Multiple DTI index analysis in normal aging, amnestic MCI and AD. Relationship with neuropsychological performance. Neurobiol Aging 33:61–74

    Article  PubMed  Google Scholar 

  82. Teipel SJ, Meindl T, Wagner M et al (2010) Longitudinal changes in fiber tract integrity in healthy aging and mild cognitive impairment: a DTI follow-up study. J Alzheimers Dis 22:507–522

    PubMed  Google Scholar 

  83. Haller S, Nguyen D, Rodriguez C et al (2010) Individual prediction of cognitive decline in mild cognitive impairment using support vector machine-based analysis of diffusion tensor imaging data. J Alzheimers Dis 22:315–327

    PubMed  Google Scholar 

  84. O'Dwyer L, Lamberton F, Bokde AL et al (2012) Using support vector machines with multiple indices of diffusion for automated classification of mild cognitive impairment. PLoS One 7:e32441

    Article  PubMed  CAS  Google Scholar 

  85. Haller S, Lovblad KO, Giannakopoulos P (2011) Principles of classification analyses in mild cognitive impairment (MCI) and Alzheimer disease. J Alzheimers Dis 26(Suppl 3):389–394

    PubMed  Google Scholar 

  86. Noble WS (2006) What is a support vector machine? Nat Biotechnol 24:1565–1567

    Article  PubMed  CAS  Google Scholar 

  87. Plant C, Teipel SJ, Oswald A et al (2010) Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer's disease. NeuroImage 50:162–174

    Article  PubMed  Google Scholar 

  88. Misra C, Fan Y, Davatzikos C (2009) Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI. NeuroImage 44:1415–1422

    Article  PubMed  Google Scholar 

  89. Fan Y, Batmanghelich N, Clark CM et al (2008) Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline. NeuroImage 39:1731–1743

    Article  PubMed  Google Scholar 

  90. Haller S, Missonnier P, Herrmann FR et al (2013) Individual classification of mild cognitive impairment subtypes by support vector machine analysis of white matter DTI. AJNR Am J Neuroradiol 34:283–291

    Article  PubMed  CAS  Google Scholar 

  91. Wee CY, Yap PT, Zhang D et al (2012) Identification of MCI individuals using structural and functional connectivity networks. NeuroImage 59:2045–2056

    Article  PubMed  Google Scholar 

  92. Caroli A, Prestia A, Chen K et al (2012) Summary metrics to assess Alzheimer disease-related hypometabolic pattern with 18F-FDG PET: head-to-head comparison. J Nucl Med 53:592–600

    Article  PubMed  CAS  Google Scholar 

  93. Chen K, Ayutyanont N, Langbaum JB et al (2011) Characterizing Alzheimer's disease using a hypometabolic convergence index. NeuroImage 56:52–60

    Article  PubMed  CAS  Google Scholar 

  94. Garibotto V, Montandon ML, Viaud CT et al (2013) Regions of interest-based discriminant analysis of DaTSCAN SPECT and FDG-PET for the classification of dementia. Clin Nucl Med 38:e112–e117

    Article  PubMed  Google Scholar 

  95. Haense C, Herholz K, Jagust WJ et al (2009) Performance of FDG PET for detection of Alzheimer's disease in two independent multicentre samples (NEST-DD and ADNI). Dement Geriatr Cogn Disord 28:259–266

    Article  PubMed  CAS  Google Scholar 

  96. Minoshima S, Frey KA, Koeppe RA et al (1995) A diagnostic approach in Alzheimer's disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med 36:1238–1248

    PubMed  CAS  Google Scholar 

  97. Tomlinson BE, Blessed G, Roth M (1968) Observations on the brains of non-demented old people. J Neurol Sci 7:331–356

    Article  PubMed  CAS  Google Scholar 

  98. Fotenos AF, Mintun MA, Snyder AZ et al (2008) Brain volume decline in aging: evidence for a relation between socioeconomic status, preclinical Alzheimer disease, and reserve. Arch Neurol 65:113–120

    Article  PubMed  Google Scholar 

  99. Garibotto V, Borroni B, Kalbe E et al (2008) Education and occupation as proxies for reserve in aMCI converters and AD: FDG-PET evidence. Neurology 71:1342–1349

    Article  PubMed  CAS  Google Scholar 

  100. Perneczky R, Haussermann P, Diehl-Schmid J et al (2007) Metabolic correlates of brain reserve in dementia with Lewy bodies: an FDG PET study. Dement Geriatr Cogn Disord 23:416–422

    Article  PubMed  CAS  Google Scholar 

  101. Premi E, Garibotto V, Gazzina S et al (2013) Beyond cognitive reserve: behavioural reserve hypothesis in frontotemporal dementia. Behav Brain Res 245:58–62

    Article  PubMed  Google Scholar 

  102. Roe CM, Mintun MA, Ghoshal N et al (2010) Alzheimer disease identification using amyloid imaging and reserve variables: proof of concept. Neurology 75:42–48

    Article  PubMed  Google Scholar 

  103. Vemuri P, Weigand SD, Przybelski SA et al (2011) Cognitive reserve and Alzheimer's disease biomarkers are independent determinants of cognition. Brain 134:1479–1492

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by Swiss National Foundation grant SNF 3200B0-116193 and SPUM 33CM30-124111.

Editor’s note

Readers will notice that this issue contains two rather similar review articles on the imaging of dementia. Both articles try to help the average radiologist identify key features which may require expert neuroradiological attention. Two groups spontaneously submitted a review article at roughly the same time. There were merits in both papers; both were favourably reviewed. It was an impossible editorial choice to select one paper over another and hence both are published alongside each other. It will be interesting to see whether the astute readers will identify differences. Indeed this may lead to some interesting discussion in the opinion column on the journal’s website.

Disclosure

No conflicts of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Haller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haller, S., Garibotto, V., Kövari, E. et al. Neuroimaging of dementia in 2013: what radiologists need to know. Eur Radiol 23, 3393–3404 (2013). https://doi.org/10.1007/s00330-013-2957-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-013-2957-0

Keywords

Navigation