Skip to main content

Advertisement

Log in

Visualising liver fibrosis by phase-contrast X-ray imaging in common bile duct ligated mice

European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To determine whether phase-contrast X-ray imaging can be used to visualise directly the accumulated extracellular matrix proteins associated with liver fibrosis in common bile duct ligated mice.

Methods

Twenty-six-week-old C57BL female mice were randomised into three groups. In groups 1 (n = 5) and 2 (n = 10), common bile duct ligation was conducted to produce secondary biliary cirrhosis. Mouse livers were then excised 15 (group 1) and 40 days (group 2) after the ligation of the common bile duct for imaging. In the control group, the livers of 5 mice were excised 40 days after the sham operation. Images were then acquired using the analyser crystal set at different positions of the rocking curve.

Results

The results show that the fibrotic septa and hepatic lobules enclosed by fibrotic septa can be visualised clearly at the whole organ level via phase-contrast X-ray imaging without any contrast agent.

Conclusion

These results suggest that phase-contrast X-ray imaging can easily reveal the accumulated extracellular matrix proteins associated with liver fibrosis without using any contrast agent and has great potential in the study of liver fibrosis.

Key Points

Phase-contrast X-ray imaging may aid the study of liver fibrosis.

It provides higher contrast and spatial resolution (ca. 10 μm) than conventional radiography.

It can reveal fibrotic septa, small ducts and vessels without using contrast agents.

Results in animals now need to be translated to human clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

BSRF:

Beijing Synchrotron Radiation Facility

CCD:

charge-coupled device

DEI:

diffraction-enhanced imaging

FDI:

fast digital imager

FWHM:

full width at half maximum

SR:

synchrotron radiation

References

  1. Bedossa P, Dargere D, Paradis V (2003) Sampling variability of liver fibrosis in chronic hepatitis C. Hepatology 38:1449–1457

    PubMed  Google Scholar 

  2. Cadranel JF, Rufat P, Degos F (2000) Practices of liver biopsy in France: results of a prospective nationwide survey. For the Group of Epidemiology of the French Association for the Study of the Liver (AFEF). Hepatology 32:477–481

    Article  PubMed  CAS  Google Scholar 

  3. Yoshioka K, Kawabe N, Hashimoto S (2008) Transient elastography: applications and limitations. Hepatol Res 38:1063–1068

    Article  PubMed  Google Scholar 

  4. Ogawa E, Furusyo N, Toyoda K, Takeoka H, Otaguro S, Hamada M et al (2007) Transient elastography for patients with chronic hepatitis B and C virus infection: Non-invasive, quantitative assessment of liver fibrosis. Hepatol Res 37:1002–1010

    Article  PubMed  CAS  Google Scholar 

  5. Sagir A, Erhardt A, Schmitt M, Haussinger D (2008) Transient elastography is unreliable for detection of cirrhosis in patients with acute liver damage. Hepatology 47:592–595

    Article  PubMed  CAS  Google Scholar 

  6. Arena U, Vizzutti F, Corti G, Ambu S, Stasi C, Bresci S et al (2008) Acute viral hepatitis increases liver stiffness values measured by transient elastography. Hepatology 47:380–384

    Article  PubMed  CAS  Google Scholar 

  7. Rau C, Robinson IK, Richter CP (2006) Visualizing soft tissue in the mammalian cochlea with coherent hard X-rays. Microsc Res Tech 69:660–665

    Article  PubMed  CAS  Google Scholar 

  8. Takeda T, Momose A, Itai Y, Wu J, Hirano K (1995) Phase-contrast imaging with synchrotron X-rays for detecting cancer lesions. Acad Radiol 2:799–803

    Article  PubMed  CAS  Google Scholar 

  9. Takeda T, Momose A, Hirano K, Haraoka S, Watanabe T, Itai Y (2000) Human carcinoma: early experience with phase-contrast X-ray CT with synchrotron radiation – comparative specimen study with optical microscopy. Radiology 214:298–301

    PubMed  CAS  Google Scholar 

  10. Momose A, Takeda T, Itai Y (2000) Blood vessels: depiction at phase-contrast X-ray imaging without contrast agents in the mouse and rat-feasibility study. Radiology 217:593–596

    PubMed  CAS  Google Scholar 

  11. Hwu Y, Tsai WL, Chang HM et al (2004) Imaging cells and tissues with refractive index radiology. Biophys J 87:4180–4187

    Article  PubMed  CAS  Google Scholar 

  12. Yoon CY, Sung DJ, Lee JH et al (2007) Imaging of renal and prostate carcinoma with refractive index radiology. Int J Urol 14:96–103

    Article  PubMed  Google Scholar 

  13. Arfelli F, Bonvicini V, Bravin A et al (1998) Mammography of a phantom and breast tissue with synchrotron radiation and a linear-array silicon detector. Radiology 208:709–715

    PubMed  CAS  Google Scholar 

  14. Arfelli F, Bonvicini V, Bravin A et al (2000) Mammography with synchrotron radiation: phase-detection techniques. Radiology 215:286–293

    PubMed  CAS  Google Scholar 

  15. Pisano ED, Johnston RE, Chapman D et al (2000) Human breast cancer specimens: diffraction-enhanced imaging with histologic correlation – improved conspicuity of lesion detail compared with digital radiography. Radiology 214:895–901

    PubMed  CAS  Google Scholar 

  16. Zhang X, Liu XS, Yang XR, Chen SL, Zhu PP, Yuan QX (2008) Mouse blood vessel imaging by in-line x-ray phase-contrast imaging. Phys Med Biol 53:5735–5743

    Article  PubMed  Google Scholar 

  17. Zhang X, Yang X-R et al (2010) Diffraction enhanced X-ray imaging of various mouse organs. AJR 195:545–549

    Article  PubMed  Google Scholar 

  18. Gao D, Pogany A, Stevenson AW, Wilkins SW (1998) Phase-contrast radiography. Radiographics 18:1257–1267

    PubMed  CAS  Google Scholar 

  19. Momose A, Takeda T, Itai Y, Hirano K (1996) Phase-contrast X-ray computed tomography for observing biological soft tissues. Nat Med 2:473–475

    Article  PubMed  CAS  Google Scholar 

  20. Li J, Williams JM, Zhong Z et al (2005) Reliability of diffraction enhanced imaging for assessment of cartilage lesions, ex vivo. Osteoarthritis Cartilage 13:187–197

    Article  PubMed  Google Scholar 

  21. Muehleman C, Li J, Zhong Z (2006) Preliminary study on diffraction enhanced radiographic imaging for a canine model of cartilage damage. Osteoarthritis Cartilage 14:882–888

    Article  PubMed  CAS  Google Scholar 

  22. Li J, Zhong Z, Lidtke R et al (2003) Radiography of soft tissue of the foot and ankle with diffraction enhanced imaging. J Anat 202:463–470

    Article  PubMed  Google Scholar 

  23. Beckmann F, Heise K, Kolsch B et al (1999) Three-dimensional imaging of nerve tissue by x-ray phase-contrast microtomography. Biophys J 76:98–102

    Article  PubMed  CAS  Google Scholar 

  24. Lewis RA, Yagi N, Kitchen MJ et al (2005) Dynamic imaging of the lungs using x-ray phase contrast. Phys Med Biol 50:5031–5040

    Article  PubMed  CAS  Google Scholar 

  25. Chapman D, Thomlinson W, Johnston RE et al (1997) Diffraction enhanced x-ray imaging. Phys Med Biol 42:2015–2025

    Article  PubMed  CAS  Google Scholar 

  26. Kiss MZ, Sayers DE, Zhong Z, Parham C, Pisano ED (2004) Improved image contrast of calcifications in breast tissue specimens using diffraction enhanced imaging. Phys Med Biol 49:3427–3439

    Article  PubMed  Google Scholar 

  27. Lewis RA, Hall CJ, Hufton AP et al (2003) X-ray refraction effects: application to the imaging of biological tissues. Br J Radiol 76:301–308

    Article  PubMed  CAS  Google Scholar 

  28. Abdel AG, Lebeau G, Rescan PY et al (1990) Reversibility of hepatic fibrosis in experimentally induced cholestasis in rat. Am J Pathol 137:1333–1342

    Google Scholar 

  29. Alberto B, Stefan F, William CT (2002) Very-low-dose mammography: new perspectives in diffraction enhanced imaging (DEI) mammography. In: Larry EA, Martin JY (eds) SPIE 4682:167–173

  30. Connor DM, Zhong Z, Foda HD et al (2011) Diffraction enhanced imaging of a rat model of gastric acid aspiration pneumonitis. Acad Radiol 18:1515–1521

    Article  PubMed  Google Scholar 

  31. Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357:2277–2284

    Article  PubMed  CAS  Google Scholar 

  32. Chapman D, Pisano E, Thomlinson W et al (1998) Medical applications of diffraction enhanced imaging. Breast Dis 10:197–207

    PubMed  CAS  Google Scholar 

  33. Carroll FE, Waters JW, Traeger RH et al (1999) Production of tunable, monochromatic X-rays by the Vanderbilt free-electron laser. Free-Electron Laser Challenges 3614:139–146

    Google Scholar 

  34. Otendal M, Tuohimaa T, Hemberg O, Hertz HM (2004) Status of the liquid-metal-jet-anode electron-impact x-ray source. In: MacDonald CA, Macrander AT, Ishikawa T, Morawe C, Wood JL (eds) Conference on X-ray sources and optics. SPIE Int Soc Optical Engineering, Denver, CO, pp 57–63

    Google Scholar 

  35. Kleuker U, Suortti P, Weyrich W, Spanne P (1998) Feasibility study of x-ray diffraction computed tomography for medical imaging. Phys Med Biol 43:2911–2923

    Article  PubMed  CAS  Google Scholar 

  36. Bravin A, Keyrilainen J, Fernandez M et al (2007) High-resolution CT by diffraction-enhanced x-ray imaging: mapping of breast tissue samples and comparison with their histo-pathology. Phys Med Biol 52:2197–2211

    Article  PubMed  Google Scholar 

  37. Sera T, Yokota H, Fujisaki K et al (2008) Development of high-resolution 4D in vivo-CT for visualization of cardiac and respiratory deformations of small animals. Phys Med Biol 53:4258–4301

    Article  Google Scholar 

  38. Castelli E, Tonutti M, Arfelli F et al (2011) Mammography with synchrotron radiation: first clinical experience with phase-detection technique. Radiology 259:684–694

    Article  PubMed  Google Scholar 

  39. Benyon RC, Iredale JP (2000) Is liver fibrosis reversible? Gut 46:443–446

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work was done at the 4W1A Topography Station of the Beijing Synchrotron Radiation Facility (BSRF) and was supported by the Shanghai Municipal Natural Science Foundation (no. 11ZR1407800), the National Natural Science Foundation of China (no. 81172073) and the National Program on Key Basic Research Project (973 program, no. 2010CB834305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-jun Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Yang, XR., Chen, Y. et al. Visualising liver fibrosis by phase-contrast X-ray imaging in common bile duct ligated mice. Eur Radiol 23, 417–423 (2013). https://doi.org/10.1007/s00330-012-2630-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-012-2630-z

Keywords

Navigation