Skip to main content
Log in

Hypertensive heart disease: MR tissue phase mapping reveals altered left ventricular rotation and regional myocardial long-axis velocities

European Radiology Aims and scope Submit manuscript

Abstract

Objectives

The aim of this study was the evaluation of left ventricular (LV) segmental 3D velocities in patients with hypertensive heart disease using magnetic resonance (MR) tissue phase mapping (TPM).

Methods

LV radial, long-axis and rotational myocardial velocities were assessed by TPM in patients with LV hypertrophy and preserved EF (n = 18, age = 53 ± 12 years) and volunteers (n = 20, age = 51 ± 4 years). Systolic and diastolic peak and time-to-peak velocities were mapped onto a 16-segment LV model. 3D myocardial motion was displayed on an extended visualisation model. Correlation coefficients were calculated to investigate differences in regional dynamics.

Results

Patients revealed diastolic dysfunction as expressed by decreased peak long-axis velocities in all (except apical) segments (basal, P ≤ 0.01; two midventricular segments, P = 0.02, P = 0.03). During systole, hypertrophy was associated with heterogeneous behaviour for long-axis velocities including an increase in anteroseptal apical and midventricular regions (P = 0.001), a reduction in mid-inferior segments (P = 0.03) and enhanced septal velocities (P < 0.05). Segmental correlation analysis revealed altered dynamics of LV base rotation and increased dyssynchrony of lateral long-axis motion.

Conclusions

Patients with hypertensive heart disease demonstrated alterations in systolic long-axis motion, basal rotation and dyssynchrony. Longitudinal studies are needed to investigate the value of regional wall motion abnormalities regarding disease progression and outcome.

Key Points

Magnetic resonance tissue phase mapping enables segmental evaluation of 3D myocardial velocities.

Patients with hypertensive heart disease demonstrated new alterations in systolic long-axis motion.

Correlation analysis revealed left ventricular long-axis dyssynchrony and an altered rotation.

• MR may provide new, sensitive diagnostic markers concerning hypertensive heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BNP:

Brain natriuretic peptide

CC:

Correlation coefficient

EF:

Ejection fraction

LV:

Left ventricle left ventricular

MRI:

Magnetic resonance imaging

TPM:

Tissue phase mapping

TTP:

Time to peak

3D:

3-Dimensional

References

  1. Zile MR, Brutsaert DL (2002) New concepts in diastolic dysfunction and diastolic heart failure: part I: diagnosis, prognosis, and measurements of diastolic function. Circulation 105:1387–1393

    Article  PubMed  Google Scholar 

  2. Levy D, Larson MG, Vasan RS, Kannel WB, Ho KK (1996) The progression from hypertension to congestive heart failure. JAMA 275:1557–1562

    Article  PubMed  CAS  Google Scholar 

  3. From AM, Scott CG, Chen HH (2010) The development of heart failure in patients with diabetes mellitus and pre-clinical diastolic dysfunction a population-based study. JACC 55:300–305

    PubMed  Google Scholar 

  4. Pavlopoulos H, Grapsa J, Stefanadi E et al (2008) The evolution of diastolic dysfunction in the hypertensive disease. Eur J Echocardiogr 9:772–778

    Article  PubMed  Google Scholar 

  5. Takemoto Y, Pellikka PA, Wang J et al (2005) Analysis of the interaction between segmental relaxation patterns and global diastolic function by strain echocardiography. J Am Soc Echocardiogr 18:901–906

    Article  PubMed  Google Scholar 

  6. Pavlopoulos H, Nihoyannopoulos P (2009) Regional left ventricular distribution of abnormal segmental relaxation evaluated by strain echocardiography and the incremental value over annular diastolic velocities in hypertensive patients with normal global diastolic function. Eur J Echocardiogr 10:654–662

    Article  PubMed  Google Scholar 

  7. Ommen SR, Nishimura RA, Appleton CP et al (2000) Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation 102:1788–1794

    Article  PubMed  CAS  Google Scholar 

  8. Wang M, Yip GW, Wang AY et al (2005) Tissue Doppler imaging provides incremental prognostic value in patients with systemic hypertension and left ventricular hypertrophy. J Hypertens 23:183–191

    Article  PubMed  Google Scholar 

  9. Abraham TP, Dimaano VL, Liang H (2007) Role of tissue Doppler and strain echocardiography in current clinical practice. Circulation 116:2597–2609

    Article  PubMed  Google Scholar 

  10. Duan F, Xie M, Wang X et al (2012) Preliminary clinical study of left ventricular myocardial strain in patients with non-ischemic dilated cardiomyopathy by three-dimensional speckle tracking imaging. Cardiovasc Ultrasound 10:8. doi:10.1186/1476-7120-10-8

    Article  PubMed  Google Scholar 

  11. Edvardsen T, Rosen BD, Pan L et al (2006) Regional diastolic dysfunction in individuals with left ventricular hypertrophy measured by tagged magnetic resonance imaging—the Multi-Ethnic Study of Atherosclerosis (MESA). Am Heart J 151:109–114

    Article  PubMed  Google Scholar 

  12. Palmon LC, Reichek N, Yeon SB et al (1994) Intramural myocardial shortening in hypertensive left ventricular hypertrophy with normal pump function. Circulation 89:122–131

    Article  PubMed  CAS  Google Scholar 

  13. Biederman RWW, Doyle M, Young AA et al (2008) Marked regional left ventricular heterogeneity in hypertensive left ventricular hypertrophy patients: a losartan intervention for endpoint reduction in hypertension (LIFE) cardiovascular magnetic resonance and echocardiographic substudy. Hypertension 52:279–286

    Article  PubMed  CAS  Google Scholar 

  14. Föll D, Jung B, Staehle F et al (2009) Visualization of multidirectional regional left ventricular dynamics by high-temporal-resolution tissue phase mapping. J Magn Reson Imaging 29:1043–1052

    Article  PubMed  Google Scholar 

  15. Jung B, Föll D, Bottler P, Petersen S, Hennig J, Markl M (2006) Detailed analysis of myocardial motion in volunteers and patients using high-temporal-resolution MR tissue phase mapping. J Magn Reson Imaging 24:1033–1039

    Article  PubMed  Google Scholar 

  16. Föll D, Jung B, Schilli E et al (2010) Magnetic resonance tissue phase mapping of myocardial motion: new insights in age and gender. Circ Cardiovasc Imaging 3:54–64

    Article  PubMed  Google Scholar 

  17. Föll D, Jung B, Germann E, Hennig J, Bode C, Markl M (2011) Magnetic resonance tissue phase mapping: Analysis of age-related and pathologically altered left ventricular radial and long-axis dys-synchrony. J Magn Reson Imaging Jul 14. doi: 10.1002/jmri.22641

  18. Chang S, Kim H, Kim D et al (2009) Left ventricular systolic and diastolic dys-synchrony in asymptomatic hypertensive patients. J Am Soc Echocardiogr 22:337–342

    Article  PubMed  Google Scholar 

  19. Cerqueira MD, Weissman NJ, Dilsizian V et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the American heart association. Circulation 105:539–542

    Article  PubMed  Google Scholar 

  20. Paetsch I, Foll D, Kaluza A et al (2005) Magnetic resonance stress tagging in ischemic heart disease. Am J Physiol Heart Circ Physiol 288:H2708–H2714

    Article  PubMed  CAS  Google Scholar 

  21. Aroesty JM, McKay RG, Heller GV, Royal HD, Als AV, Grossman W (1985) Simultaneous assessment of left ventricular systolic and diastolic dysfunction during pacing-induced ischemia. Circulation 71:889–900

    Article  PubMed  CAS  Google Scholar 

  22. Vasan RS, Larson MG, Benjamin EJ, Evans JC, Reiss CK, Levy D (1999) Congestive heart failure in subjects with normal versus reduced left ventricular ejection fraction: prevalence and mortality in a population-based cohort. J Am Coll Cardiol 33:1948–1955

    Article  PubMed  CAS  Google Scholar 

  23. Brutsaert DL, Sys SU, Gillebert TC (1993) Diastolic failure: pathophysiology and therapeutic implications. J Am Coll Cardiol 22:318–325

    Article  PubMed  CAS  Google Scholar 

  24. Pela G, Bruschi G, Cavatorta A, Manca C, Cabassi A, Borghetti A (2001) Doppler tissue echocardiography: myocardial wall motion velocities in essential hypertension. Eur J Echocardiogr 2:108–117

    Article  PubMed  CAS  Google Scholar 

  25. Narayanan A, Aurigemma GP, Chinali M, Hill JC, Meyer TE, Tighe DA (2009) Cardiac mechanics in mild hypertensive heart disease: a speckle-strain imaging study. Circ Cardiovas Imaging 2:382–390

    Article  Google Scholar 

  26. Vinereanu D, Nicolaides E, Tweddel AC, Fraser AG (2005) ‘Pure’ diastolic dysfunction is associated with long-axis systolic dysfunction. Implications for the diagnosis and classification of heart failure. Eur J Heart Fail 7:820–828

    Article  PubMed  Google Scholar 

  27. Vinereanu D, Lim PO, Frenneaux MP, Fraser AG (2005) Reduced myocardial velocities of left ventricular long-axis contraction identify both systolic and diastolic heart failure-a comparison with brain natriuretic peptide. EurJ Heart Fail 7:512–519

    Article  CAS  Google Scholar 

  28. Rosen BD, Fernandes VRS, Nasir K et al (2009) Age, increased left ventricular mass, and lower regional myocardial perfusion are related to greater extent of myocardial dys-synchrony in asymptomatic individuals: the multi-ethnic study of atherosclerosis. Circulation 120:859–866

    Article  PubMed  Google Scholar 

  29. Kosmala W, Kucharski W, Przewlocka-Kosmala M, Mazurek W (2004) Comparison of left ventricular function by tissue Doppler imaging in patients with diabetes mellitus without systemic hypertension versus diabetes mellitus with systemic hypertension. Am J Cardiol 94:395–399

    Article  PubMed  Google Scholar 

  30. Tan H, Zheng G, Li L et al (2008) Impaired left ventricular synchronicity in hypertensive patients with ventricular hypertrophy. J Hypertens 26:553–559

    Article  PubMed  CAS  Google Scholar 

  31. Wang Y, Hwang J, Lai L et al (2007) Coexistence and exercise exacerbation of intraleft ventricular contractile dys-synchrony in hypertensive patients with diastolic heart failure. Am Heart J 154:278–284

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Michael Markl is supported by the NMH Excellence in Academic Medicine (EAM) Program ‘Advanced Cardiovascular MRI Research Center'. Daniela Föll is supported by the Deutsche Forschungsgemeinschaft (DFG; grant no. FO 507/2-1, FO 507/3-1)

Data from this cohort have been published previously [see references 14, 16, 17]. For this study a new retrospective analysis and visualisation of regional myocardial velocities as well as segmental correlation analysis were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Foell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foell, D., Jung, B., Germann, E. et al. Hypertensive heart disease: MR tissue phase mapping reveals altered left ventricular rotation and regional myocardial long-axis velocities. Eur Radiol 23, 339–347 (2013). https://doi.org/10.1007/s00330-012-2613-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-012-2613-0

Keywords

Navigation