Skip to main content
Log in

Comprehensive phenotyping of salt-induced hypertensive heart disease in living mice using cardiac magnetic resonance

European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To characterise the effects of high-salt diet (HSD) on left ventricular (LV) mass, systolic function and coronary reserve in living mice using cardiac magnetic resonance imaging (MRI).

Methods

Thirty C57BL/6 1-month-old female mice were fed either a control (n = 15) or an HSD (n = 15). After 3 months, LV volumes, ejection fraction and mass were assessed using time-resolved three-dimensional (3D) black-blood manganese-enhanced MRI, and coronary flow velocity reserve (CFVR) was assessed using dynamic MR angiography at rest and during adenosine-induced hyperaemia. Hearts were excised to assess LV wet mass and micro-vascular remodelling at histology.

Results

Micro-vascular remodelling was found at histology in all investigated hearts from the HSD group and none from the control group. No difference between the HSD and control groups was found in terms of heart weight, LV volumes and ejection fraction. Heart to body weight ratio was higher in the HSD group (4.39 ± 0.24 vs 4.02 ± 0.16 mg/g, P < 0.001), because of lower body weight (22.3 ± 0.9 vs 24.0 ± 1.4 g, P < 0.001). CFVR was lower in the HSD group (1.73 ± 0.11 vs 1.94 ± 0.12, P < 0.001).

Conclusions

Phenotyping of hypertensive heart disease is feasible in living mice using dynamic MR angiography and time-resolved 3D black-blood manganese-enhanced MRI. HSD is associated with early impairment of coronary reserve, before the onset of significant hypertrophy.

Key Points

In vivo phenotyping of hypertensive heart disease is feasible in mice using MRI

HSD in mice is associated with early impairment of coronary reserve

Dietary salt in mice alters coronary reserve before the onset of ventricular hypertrophy

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CFVR:

Coronary flow velocity reserve

LV:

Left ventricle

EDV:

End-diastolic volume

ESV:

End-systolic volume

EF:

Ejection fraction

HSD:

High-salt diet

References

  1. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J (2005) Global burden of hypertension: analysis of worldwide data. Lancet 365:217–223

    PubMed  Google Scholar 

  2. Dahl LK (1960) Possible role of salt-intake in the development of essential hypertension. In: Cottier P, Block KD (eds) Essential hypertension. Springer, Berlin, pp 61–75

    Chapter  Google Scholar 

  3. Pinto YM, Paul M, Ganten D (1998) Lessons from rat models of hypertension: from Goldblatt to genetic engineering. Cardiovasc Res 39:77–88

    Article  PubMed  CAS  Google Scholar 

  4. Sugiyama F, Yagami K, Paigen B (2001) Mouse models of blood pressure regulation and hypertension. Curr Hypertens Rep 3:41–48

    Article  PubMed  CAS  Google Scholar 

  5. Yu Q, Larson DF, Slayback D, Lundeen TF, Baxter JH, Watson RR (2004) Characterization of high-salt and high-fat diets on cardiac and vascular function in mice. Cardiovasc Toxicol 4:37–46

    Article  PubMed  Google Scholar 

  6. Carlson SH, Wyss JM (2000) Long-term telemetric recording of arterial pressure and heart rate in mice fed basal and high NaCl diets. Hypertension 35:E1–E5

    Article  PubMed  CAS  Google Scholar 

  7. Messerli FH, Williams B, Ritz E (2007) Essential hypertension. Lancet 370:591–603

    Article  PubMed  CAS  Google Scholar 

  8. Lefrançois W, Miraux S, Calmettes G et al (2011) A fast black-blood sequence for four-dimensional cardiac manganese-enhanced MRI in mouse. NMR Biomed 24:291–298

    Article  PubMed  Google Scholar 

  9. Cochet H, Montaudon M, Laurent F et al (2010) In vivo MR angiography and velocity measurement in mice coronary arteries at 9.4 T: assessment of coronary flow velocity reserve. Radiology 254:441–448

    Article  PubMed  Google Scholar 

  10. Miraux S, Calmettes G, Massot P et al (2009) 4D retrospective black blood trueFISP imaging of mouse heart. Magn Reson Med 62:1099–1105

    Article  PubMed  Google Scholar 

  11. Ruff J, Wiesmann F, Hiller KH et al (1998) Magnetic resonance microimaging for noninvasive quantification of myocardial function and mass in the mouse. Magn Reson Med 40:43–48

    Article  PubMed  CAS  Google Scholar 

  12. Eftekhari A, Mathiassen ON, Buus NH, Gotzsche O, Mulvany MJ, Christensen KL (2011) Disproportionally impaired microvascular structure in essential hypertension. J Hypertens 29:896–905

    Article  PubMed  CAS  Google Scholar 

  13. Palombo C, Kozakova M, Magagna A et al (2000) Early impairment of coronary flow reserve and increase in minimum coronary resistance in borderline hypertensive patients. J Hypertens 18:453–459

    Article  PubMed  CAS  Google Scholar 

  14. Hartley CJ, Reddy AK, Madala S, Michael LH, Entman ML, Taffet GE (2008) Doppler estimation of reduced coronary flow reserve in mice with pressure overload cardiac hypertrophy. Ultrasound Med Biol 34:892–901

    Article  PubMed  Google Scholar 

  15. Wikström J, Grönros J, Bergström G, Gan LM (2005) Functional and morphologic imaging of coronary atherosclerosis in living mice using high-resolution color Doppler echocardiography and ultrasound biomicroscopy. J Am Coll Cardiol 46:720–727

    Article  PubMed  Google Scholar 

  16. Hartley CJ, Reddy AK, Madala S, Michael LH, Entman ML, Taffet GE (2007) Effects of isoflurane on coronary blood flow velocity in young, old and ApoE(−/−) mice measured by Doppler ultrasound. Ultrasound Med Biol 33:512–521

    Article  PubMed  Google Scholar 

  17. Hartley CJ, Reddy AK, Michael LH, Entman ML, Taffet GE (2009) Coronary flow reserve as an index of cardiac function in mice with cardiovascular abnormalities. Conf Proc IEEE Eng Med Biol Soc 2009:1094–1097

    PubMed  Google Scholar 

  18. Hartley CJ, Reddy AK, Michael LH et al (2010) Coronary flow reserve in mice: effects of age, coronary disease, and vascular loading. Conf Proc IEEE Eng Med Biol Soc 2010:3780–3783

    PubMed  Google Scholar 

  19. Schwartzkopff B, Motz W, Frenzel H, Vogt M, Knauer S, Strauer BE (1993) Structural and functional alterations of the intramyocardial coronary arterioles in patients with arterial hypertension. Circulation 88:993–1003

    Article  PubMed  CAS  Google Scholar 

  20. Rodriguez-Porcel M, Zhu XY, Chade AR et al (2006) Functional and structural remodeling of the myocardial microvasculature in early experimental hypertension. Am J Physiol Heart Circ Physiol 290:H978–H984

    Article  PubMed  CAS  Google Scholar 

  21. Crystal GJ (1996) Vasomotor effects of isoflurane in the coronary circulation. Anesthesiology 84:1516–1518

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubert Cochet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cochet, H., Lefrançois, W., Montaudon, M. et al. Comprehensive phenotyping of salt-induced hypertensive heart disease in living mice using cardiac magnetic resonance. Eur Radiol 23, 332–338 (2013). https://doi.org/10.1007/s00330-012-2598-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-012-2598-8

Keywords

Navigation