Skip to main content
Log in

Whole-body MRI and PET-CT in the management of cancer patients

  • Oncology
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Mortality rate, prognosis, and treatment outcome of cancer patients depend strongly on the detection of malignancy at an early stage and efficient monitoring of the disease. Multimodality diagnostic approaches are now widely applied for tumor detection, staging, and follow-up. However, the introduction of whole-body imaging modalities into clinical practice has substantially expanded diagnostic options. PET-CT has increased diagnostic accuracy by providing “anatometabolic” information by fusing tumor glucose-uptake measures from the PET examination and accurate delineation of anatomical structures given by spiral CT. Since PET-CT is associated with high doses of ionizing radiation, it is used in mainly tumor staging and screening within the scope of tertiary prevention. Here promising results have been reported for various tumor entities. MRI provides excellent tissue contrast, detailed morphological information and lack of ionizing radiation. MRI has been employed for the assessment of focal pathologies in specific anatomical regions. Whole-body MRI scanners using multiple receiver channels with parallel acquisition techniques now allow tumor screening from head to toe within substantially shorter examination times and without compromises in image resolution. We report our experience with these two novel techniques and discuss their benefits and drawbacks in terms of systemic tumor screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. World Health Organization (2004) WHO health report 2004: statistical annex. http://www.who.int. World Health Organization, Geneva, Switzerland

    Google Scholar 

  2. Bayes T (1763) An essay towards solving a problem in the doctrine of chances. Philos Trans R Soc Lond 53:370–418

    Article  Google Scholar 

  3. Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R et al (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41:1369–13679

    PubMed  CAS  Google Scholar 

  4. Pelosi E, Messa C, Sironi S, Picchio M, Landoni C, Bettinardi V et al (2004) Value of integrated PET/CT for lesion localisation in cancer patients: a comparative study. Eur J Nucl Med Mol Imaging 31:932–939

    Article  PubMed  Google Scholar 

  5. Lardinois D, Weder W, Hany TF, Kamel EM, Korom S et al (2003) Staging of non-small-cell cancer with integrated positron-emission tomography and computed tomography. N Engl J Med 348:2500–2507

    Article  PubMed  Google Scholar 

  6. Cohade C, Osman M, Leal J, Wahl RL (2003) Direct comparison of 18F-FDG-PET and PET-CT in patients with colorectal carcinoma. J Nucl Med 44:1797–1803

    PubMed  Google Scholar 

  7. Wechalekar K, Sharma B, Cook G (2005) PET/CT in oncology-a major advance. Clin Radiol 60:1143–1155

    Article  PubMed  CAS  Google Scholar 

  8. Barkhausen J, Quick HH, Lauenstein T et al (2001) Whole-body MR imaging in 30 seconds with real-time true FISP and a continously rolling table platform: feasability study. Radiology 220:252–256

    PubMed  CAS  Google Scholar 

  9. Pruessmann KP, Weiger M, Scheidegger MB et al (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962

    Article  PubMed  CAS  Google Scholar 

  10. Griswold MA, Jakob PM, Heidemann RM et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210

    Article  PubMed  Google Scholar 

  11. Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM (1990) The NMR phased array. Magn Reson Med 16:192–225

    Article  PubMed  CAS  Google Scholar 

  12. Keupp J, Aldefeld B, Bornert P (2005) Continously moving table SENSE imaging. Magn Reson Med 53:217–220

    Article  PubMed  Google Scholar 

  13. Anonymous (2004) Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO). http://www3.cancer.gov/prevention/plco

  14. Berry DA, Cronin KA, Plevritis SK, Fryback DG, Clarke L, Zelen M et al (2005) Effect of screening and adjuvant therapy on mortality from breast cancer. New Eng J Med 27:1784–1792

    Article  Google Scholar 

  15. Nicholson FB, Barro JL, Bartram CI, Dehmeshki J, Halligan S, Taylor S, Kamm MA et al (2005) The role of CT colonography in colorectal cancer screening. Am J Gastroenterol 100:2315–2323

    Article  PubMed  Google Scholar 

  16. Diederich S, Wormanns D, Semik M, Thomas M, Lenzen, Roos N et al (2002) Screening for early lung cancer with low-dose spiral CT: prevalence in 817 asymptomatic smokers. Radiology:773–778

  17. European Comission on Energy (2004) Europe. http://europa.eu.int/comm/erergy/nuclear/radioprotection/doc/legislation/9743_en.pdf; accessed November 22

  18. Brix G, Lechel U, Glatting G, Ziegler SI, Münzing W, Müller SP, Beyer T (2005) Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG PET/CT examinations. J Nucl Med 46:608–613

    PubMed  CAS  Google Scholar 

  19. Goehde SC, Hunold P, Vogt FM, Ajaj W, Goyen M, Herborn CU et al (2005) Full-body cardiovascular and tumor MRI for early detection of disease: feasibility and initial experience in 298 subjects. Am J Roentgenol 184:598–611

    PubMed  Google Scholar 

  20. Kramer H, Schoenberg SO, Nikolaou K, Huber A, Struwe A, Winnik E (2005) Cardiovascular screening with parallel imaging techniques and a whole-body imager. Radiology 236:300–310

    Article  PubMed  Google Scholar 

  21. Ajaj W, Pelster G, Treichel U, Vogt FM, Debatin JF, Ruehm SG (2003) Dark lumen magnetic resonance colonography: comparison with conventional colonoscopy fort he detection of colorectal pathology. Gut 52:1738–1743

    Article  PubMed  CAS  Google Scholar 

  22. American Joint Committee on Cancer (2002) AJCC cancer staging manual, 6th edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  23. Antoch G, Saoudi N, Kuehl H, Dahmen G, Mueller SP, Beyer T et al (2004) Accuracy of whole-body dual-modality fluorine-18–2-fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography (FDG-PET/CT) for tumor staging in solid tumors: comparison with CT and PET. J Clin Oncol 22:4357–4368

    Article  PubMed  Google Scholar 

  24. Semelka RC, Worawattanakul S, Kelekis NL et al (1997) Liver lesion detection, characterization, and effect on patient management: comparison of single phase spiral-CT and current MR techniques. J Magn Reson Imaging 7:1040–1047

    Article  PubMed  CAS  Google Scholar 

  25. Steinborn M, Heuck AF, Tiling R, Bruegel M, Gauger L, Reiser MF (1999) Whole body bone marrow MRI in patients with metastatic disease to the skeletal system. J Comput Assist Tomogr 23:123–129

    Article  PubMed  CAS  Google Scholar 

  26. Antoch G, Vogt FM, Freudenberg LS, Nazaradeh F, Goehde SC, Barkhausen J et al (2003) Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. JAMA 290:3199–3206

    Article  PubMed  CAS  Google Scholar 

  27. Schmidt GP, Baur-Melnyk A, Herzog P, Schmid R, Tiling R, Reiser MF et al (2005) High-resolution whole-body MRI tumor staging with the use of parallel imaging versus dual modality PET-CT: experience on a 32-channel system. Invest Radiol 40:743–7531

    Article  PubMed  Google Scholar 

  28. Antoch G, Saoudi N, Kuehl H, Dahmen G, Mueller SP, Beyer T et al (2004) Accuracy of whole-body dual-modality fluorine-18–2-fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography (FDG-PET/CT) for tumor staging in solid tumors: comparison with CT and PET. J Clin Oncol 22:4357–4368

    Article  PubMed  Google Scholar 

  29. Gutzeit A, Antoch G, Kühl H, Egelhof T, Fischer M, Hauth E et al (2005) Unknown primary tumours: detection with dual-modality PET-CT-initial experience. Radiology 234:227–234

    Article  PubMed  Google Scholar 

  30. Brennan DD, Gleeson T, Coate LE, Cronin C, Carney D, Eustace SJ (2005) A comparison of whole-body MRI and CT for the staging of lymphoma. Am J Roentgenol 185:711–716

    Article  PubMed  CAS  Google Scholar 

  31. Kellenberger CJ, Miller SF, Khan M, Gilday D, Weitzman S, Babyn PS (2004) Initial experience with FSE STIR-whole-body MR imaging for staging lymphoma in children. Eur Radiol 14:1829–1841

    Article  PubMed  Google Scholar 

  32. Pieterman RM, van Putten JW, Meuzelaar JJ, Mooyaart EL, Vaalburg W, Kotere GH et al (2000) Preoperative staging of non-small-cell lung cancer with positron-emission tomography. N Engl J Med 343:254–261

    Article  PubMed  CAS  Google Scholar 

  33. Takahara T, Imay Y, Yamashita T, Yasuda S, Nasu S, Van Cauteren M (2004) Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 22:275–282

    PubMed  Google Scholar 

  34. Ohno Y, Hatabu H, Takenaka D, Higashino T, Watanabe H, Ohbayashi C et al (2004) Metastases in mediastinal and hilar lymph nodes in patients with non-small cell lung cancer: quantitative and qualitative assessment with STIR turbo spin-echo MR imaging. Radiology 231:872–879

    Article  PubMed  Google Scholar 

  35. Ghanem N, Uhl M, Brink I, Schäfer O, Kelly T, Moser E (2005) Diagnostic value of MRI in comparison to scintigraphy, PET, MS-CT and PET-CT for the detection of metastases of bone. Eur J Radiol 55:41–55

    Article  PubMed  CAS  Google Scholar 

  36. Mentzel HJ, Kentouche K, Sauner D, Fleischmann C, Vogt S, Gottschild D (2004) Comparison of whole-body STIR-MRI and 99m-Tc-methylene-diphosphonate scintigraphy in children with suspected multifocal bone lesions. Eur Radiol 14:2297–2302

    Article  PubMed  Google Scholar 

  37. Schmidt GP, Schoenberg SO, Reiser MF, Baur-Melnyk A (2005) Whole-body MR imaging of bone marrow. Eur J Radiol 55:33–40

    Article  PubMed  CAS  Google Scholar 

  38. Daldrup-Link HE, Franzius C, Link TM et al (2001) Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR Am J Roentgenol 177:229–236

    PubMed  CAS  Google Scholar 

  39. Schlemmer HP, Schäfer J, Pfannenberg C, Radny P, Korchidi S, Müller-Horvat C (2005) Fast whole-body assessment of metastatic disease using a novel magnetic resonance imaging system: initial experiences. Invest Radiol 40:64–71

    Article  PubMed  Google Scholar 

  40. Cook GJ, Wegner E, Fogleman I (2004) Pitfalls and artefacts in 18 FDG-PET and PET-CT oncologic imaging. Semin Nucl Med 34:122–133

    Article  PubMed  Google Scholar 

  41. Goerres GW, Kamel E, Heidelberg TN, Schwitter MR, Burger C, von Schuthess GK (2002) Accuracy of image co-registration in the thorax: influence of respiration. Eur J Nucl Med Mol Imaging 29:351–360

    Article  PubMed  CAS  Google Scholar 

  42. Antoch G, Freudenberg LS, Stattaus J, Jentzen W, Debatin JF et al (2002) Focal tracer uptake: a potential artefact in contrast-enhanced dual-modality PET-CT scans. J Nucl Med 43:1339–1342

    PubMed  Google Scholar 

  43. Ichikawa T, Erturk S, Motosuqi U, Sano K, Ros P et al (2005) Virtual PET-MRI as a novel oncologic imaging of the body: principles, techniques and clinical applications. RSNA 2005, abstract 1330BP-e

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerwin P. Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, G.P., Haug, A.R., Schoenberg, S.O. et al. Whole-body MRI and PET-CT in the management of cancer patients. Eur Radiol 16, 1216–1225 (2006). https://doi.org/10.1007/s00330-006-0183-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-006-0183-8

Keywords

Navigation