Skip to main content
Log in

Hydrolytic enzyme-producing microbes in the Antarctic oligochaete Grania sp. (Annelida)

  • Short Note
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The oligochaete Grania sp. is a common inhabitant of Artigas Beach at Maxwell Bay (King George Island, South Shetland Islands, Maritime Antarctica) that proliferate during the summer season and feed on debris of red and brown algae. This investigation was undertaken to test the hypothesis that Grania sp. has an enzyme-producing microbiota that may facilitate the worm’s nutrient uptake by processing or metabolizing macroalgae compounds. A culture-based approach was used to investigate the occurrence of microorganisms able to degrade proteins, lipids and polysaccharides. Thirty-four hydrolytic enzyme-producing microorganisms associated with these worms, including bacteria and yeasts, were isolated and identified by sequencing a partial fragment of the 16S and 26S rDNA genes, respectively. These microorganisms have the ability to produce extracellular proteases, esterases, amylases, cellulases and agarases. The microbial genera found during this work (Flavobacterium, Pseudomonas, Salinibacterium, Psychrobacter, Cystobasidium and Rhodotorula) have been previously described in association with red and brown Antarctic algae. Our results suggest that this microbiome has a digestive capability that may assist Grania sp. in metabolizing nutrients from algae, leading us to consider the possibility of a mutualistic relationship between them. The association between the worm Grania sp. and a cold-active hydrolyzing microbiota may contribute to the macroalgae decomposition and nutrient recycling in the Antarctic ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Askarian F, Zhou Z, Olsen RE, Sperstad S, Ringo E (2012) Culturable autochthonous gut bacteria in Atlantic salmon (Salmo salar L.) fed diets with or without chitin. Characterization by 16S rRNA gene sequencing, ability to produce enzymes and in vitro growth inhibition of four fish pathogens. Aquacult 326–329:1–8. doi:10.1016/j.aquaculture.2011.10.016

    Article  Google Scholar 

  • Barsanti L, Gualtieri P (2014) Algae. Anatomy, biochemistry, and biotechnology, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  • Beloqui A, Nechitaylo TY, López-Cortés N, Ghazi A, Guarzzaroni ME, Polaina J, Strittmatter AW, Reva O, Waliczek A, Yakimov MM, Golyshina OV, Ferrer M, Golyshin PN (2010) Diversity of glycosyl hydrolases from cellulose-depleting communities enriched from casts of two earthworm species. Appl Environ Microbiol 76:5934–5946. doi:10.1128/AEM.00902-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bick A, Arlt G (2013) Description of intertidal macro- and meiobenthic assemblages in Maxwell Bay, King George Island, South Shetland Islands, Southern ocean. Polar Biol 36:673–689. doi:10.1007/s00300-013-1293-9

    Article  Google Scholar 

  • Boundy-Mills KL (2014) Methods for the isolation and investigation of the diversity of cold-adapted yeasts and their ex situ preservation in worldwide collections. In: Buzzini P, Margesin R (eds) cold-adapted yeast. Springer, Berlin, pp 23–45

    Chapter  Google Scholar 

  • Chong CW, Goh YS, Convey P, Pearce D, Ping Tang IK (2013) Spatial pattern in Antarctica; what can we learn from Antarctic bacterial isolates? Extremophiles 17:733–745. doi:10.1007/s00792-013-0555-3

    Article  PubMed  Google Scholar 

  • Coates KA (1984) Specific criteria in Grania (Oligochaeta, Enchytraeidae). Hydrobiologia 115:45–50

    Article  Google Scholar 

  • Coleman DC, Wall DH (2007) Fauna: The engine for microbial activity and transport. In: Paul EA (ed) Soil microbiology, ecology, and biochemistry, 3rd edn. Academic Press, Burlington, pp 163–191

    Chapter  Google Scholar 

  • De Wit P (2010) Systematics of Grania (Clitellata: Enchytraeidae), an interstitial annelid taxon. Doctoral thesis. University of Gothenburg, Gothenburg

  • Engel P, Martinson VG, Moran NA (2012) Functional diversity within the simple gut microbiota of the honey bee. Proc Natl Acad Sci USA 109:11002–11007. doi:10.1073/pnas.1202970109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furbino LE, Godinho VM, Santiago IF, Pellizari FM, Alves TMA, Zani CL, Junior PAS, Romanha AJ, Carvalho AGO, Gil LHVG, Rosa CA, Minnis AM, Rosa LH (2014) Diversity patterns, ecology and biological activities of fungal communities associated with the endemic macroalgae across the Antarctic Peninsula. Fungal Microbiol 67:775–787. doi:10.1007/s00248-014-0374-9

    Google Scholar 

  • Ganter PF (2006) Yeast and Invertebrate Associations. In: Rosa CA, Peter G (eds) The yeast handbook—biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 303–370

    Chapter  Google Scholar 

  • Giere O (1975) Population structure, food relations and ecological role of marine oligochaetes. With special reference to meiobenthic species. Mar Biol 31:139–156

    Article  Google Scholar 

  • Hommersand MH, Moe RL, Amsler CD, Fredericq S (2009) Notes on the systematics and biogeographical relationships of Antarctic and sub-Antarctic Rhodophyta. Bot Mar 52:509–534

    Article  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. doi:10.1093/molbev/msw054

    Article  CAS  PubMed  Google Scholar 

  • Laich F, Vaca I, Chavez R (2013) Rhodotorula portillonensis sp. nov., a basidiomycetous yeast isolated from Antarctic shallow-water marine sediment. Int J Syst Evol Microbiol 63:3884–3891. doi:10.1099/ijs.0.052753-0

    Article  CAS  PubMed  Google Scholar 

  • Lamb IM, Zimmermann MH (1977) Benthic marine algae of the Antarctic Peninsula. A preliminary guide to the commer benthic marine algae of the Antarctic Peninsula and adjacent islands. Biol Antarct Seas 5(23):130–227

    Google Scholar 

  • Lazado CC, Caipang CMA, Kiron V (2012) Enzymes from the gut bacteria of Atlantic cod, Gadus morhua and their influence on intestinal enzyme activity. Aquacult Nutr 18:423–431. doi:10.1111/j.1365-2095.2011.00928.x

    Article  CAS  Google Scholar 

  • Leiva S, Alvarado P, Huang Y, Wang J, Garrido I (2015) Diversity of pigmented Gram-positive bacteria associated with marine macroalgae from Antarctica. FEMS Microbiol Lett. doi:10.1093/femsle/fnv206

    PubMed  Google Scholar 

  • Locke JM (1998) Systernatics and biology of Grania (Annelida, Clitellata, Enchytraeidae) of the Bermuda Islands. Master thesis, University of Toronto, Toronto

  • Loperena L, Soria V, Varela H, Lupo S, Bergalli A, Guigou M, Pellegrino A, Bernardo A, Calviño A, Rivas F, Batista S (2012) Extracellular enzymes produced by microorganisms isolated from maritime Antarctica. World J Microbiol Biotechnol 28:2249–2256. doi:10.1007/s11274-012-1032-3

    Article  CAS  PubMed  Google Scholar 

  • Loque CP, Medeiros AO, Pellizari FM, Oliveira EC, Rosa CA, Rosa LH (2010) Fungal community associated with marine macroalgae from Antarctica. Polar Biol 33:641–648. doi:10.1007/s00300-009-0740-0

    Article  Google Scholar 

  • Martinez-Rosales C, Castro-Sowinski S (2011) Antarctic bacterial isolates that produce cold-active extracellular proteases at low temperature but are active and stable at high temperature. Polar Res 30:7123. doi:10.3402/polar.v30i0.7123

    Article  Google Scholar 

  • Miyashita M, Fujimura S, Nakagawa Y, Nishizawa M, Tomizuka N, Nakagawa T, Nakagawa J (2010) Flavobacterium algicola sp. nov., isolated from marine algae. Int J Syst Evol Microbiol 60:344–348. doi:10.1099/ijs.0.009365-0

    Article  CAS  PubMed  Google Scholar 

  • Murakami T, Segawa T, Bodington D, Dial R, Takeuchi N, Kohshima S, Hongoh Y (2015) Census of bacterial microbiota associated with the glacier ice worm Mesenchytraeus solifugus. FEMS Microb Ecol. doi:10.1093/femsec/fiv003

    Google Scholar 

  • Newton ILG, Sheehan KB, Lee FJ, Horton MA, Hicks RD (2013) Invertebrate systems for hypothesis-driven microbiome research Microb Sc Med 1:1–9. doi:10.2478/micsm-2013-0001

    Google Scholar 

  • Pandey A, Lee DJ, Chisti Y, Soccol CR (eds) (2014) Biofuel from algae. Elsevier, San Diego

    Google Scholar 

  • Pereira L, Neto JM (eds) (2015) Marine algae—biodiversity, taxonomy, environmental assessment, and biotechnology. CRC Press, Boca Raton

    Google Scholar 

  • Prantoni AL, De Wit P, Erséus C (2016) First reports of Grania (Clitellata: Enchytraeidae) from Africa and South America: molecular phylogeny and descriptions of nine new species. Zool J Linn Soc 176:485–510. doi:10.1111/zoj.12333

    Article  Google Scholar 

  • Quartino ML, Boraso de Zaixso ML (2008) Summer macroalgal biomass in Potter Cove, South Shetland Islands, Antarctica: its production and flux to the ecosystem. Polar Biol 31:281–294. doi:10.1007/s00300-007-0356-1

    Article  Google Scholar 

  • Ramírez ME (2010) Flora marina bentónica de la región austral de Sudamérica y la Antártica. An Inst Patag (Chile) 38:57–71

    Google Scholar 

  • Rojan JP, Anishab GS, Madhavan Nampoothiric K, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102:186–193. doi:10.1016/j.biortech.2010.06.139

    Article  Google Scholar 

  • Rota E, Erséus C (1996) Six new species of Grania (Oligochaeta, Enchytraeidae) from the Ross Sea, Antarctica. Antarct Sci 2:169–183

    Google Scholar 

  • Rühland C (2010) Characterization of bacterial endo- and ectosymbionts of oligochaete worms from marine sediments: phylogeny and metabolic potential. Doctoral thesis, Max-Planck-Institut für Marine Mikrobiologie and University of Bremen, Bremen

  • Schimak MP, Kleiner M, Wetzel S, Liebeke M, Dubilier N, Fuchs BM (2016) MiL-FISH: multilabeled oligonucleotides for fluorescence in situ hybridization improve visualization of bacterial cells. Appl Environ Microbiol 82:62–70. doi:10.1128/AEM.02776-15

    Article  CAS  Google Scholar 

  • Singh P, Singh SM, Tsuji M, Prasad GS, Hoshino T (2014) Rhodotorula svalbardensis sp. nov., a novel yeast species isolated from cryoconite holes of Ny-Alesund, Arctic. Cryobiology 68:122–128. doi:10.1016/j.cryobiol.2014.01.006

    Article  CAS  PubMed  Google Scholar 

  • Tropeano M, Vázquez S, Coria S, Turjanski A, Cicero D, Bercovich A, Mac Cormack W (2013) Extracellular hydrolytic enzyme production by proteolytic bacteria from the Antarctic. Pol Polar Res 34:253–267. doi:10.2478/popore-2013-0014

    Google Scholar 

  • Turchetti B, Burzzini P, Goretti M, Branda E, Diolaiuti G, D’Agata C, Smiraglia C, Vaughan-Martini A (2008) Psychrophilic yeasts in glacial environments of Alpine glaciers. FEMS Microbiol Ecol 63:73–83. doi:10.1111/j.1574-6941.2007.00409.x

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, Londres, pp 315–322

    Google Scholar 

  • Wüst P, Horn M, Drake H (2011) Clostridiaceae and Enterobacteriaceae as active fermenters in earthworm gut content. ISME J 5:92–106. doi:10.1038/ismej.2010.99

    Article  PubMed  Google Scholar 

  • Yurkov AM, Kachalkin AV, Daniel HM, Groenewald M, Libkind D, de Gracia V, Zalar P, Gouliamova DE, Boekhout T, Begerow D (2015) Two yeast species Cystobasidium psychroaquaticum f.a. sp. nov. and Cystobasidium rietchieii f.a. sp. nov. isolated from natural environments, and the transfer of Rhodotorula minuta clade members to the genus Cystobasidium. Antoine van Leeuwenhoek 107:173–185. doi:10.1007/s10482-014-0315-0

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by PEDECIBA (Programa de Desarrollo de las Ciencias Básicas) and ANII (Agencia Nacional de Investigación e Innovación) (FSE_1_2104_1_102649). The work of LMH and JJM was supported by ANII. The authors thank the Uruguayan Antarctic Institute for the logistic support during the stay in the Artigas Base. We also thank Vivian Irving and Nicolás Boullosa for their assistance in collecting worms and isolating microorganisms. S. Castro-Sowinski is a member of the National Research System (SNI, Sistema Nacional de Investigadores).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Castro-Sowinski.

Additional information

Lorena M. Herrera and César X. García-Laviña have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrera, L.M., García-Laviña, C.X., Marizcurrena, J.J. et al. Hydrolytic enzyme-producing microbes in the Antarctic oligochaete Grania sp. (Annelida). Polar Biol 40, 947–953 (2017). https://doi.org/10.1007/s00300-016-2012-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-016-2012-0

Keywords

Navigation