Skip to main content
Log in

Abundant deposits of nutrients inside lakebeds of Antarctic oligotrophic lakes

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Most freshwater lakes in continental Antarctica are in a paradoxical situation as they are in nutrient-poor conditions despite luxuriant vegetation growth covering the entire lakebed. Although the phytobenthos possibly take up nutrients from inside lakebeds, the amount of nutrients and their utilization by these phytobenthos are unclear. Sediment cores were collected from 17 freshwater lakes in East Antarctica, then dissolved inorganic nitrogen (DIN) and phosphate of the lake waters, and the vertical profiles of the interstitial water in the sediment cores were analyzed. Here we revealed that there are abundant nutrients inside lakebeds surface with 3–220 times the amount of DIN and 2–102 times concentration of phosphate than those in lake water, and the nutrient profile inside the sediment suggested that the phytobenthos can utilize the much nutrients from lakebeds. We also show that nitrogen stable isotope ratios of shallower phytobenthos lying on the small amount of nutrients in a lake are similar to that of terrestrial cyanobacteria possessing N2 fixation ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bayliss P, Ellis-Evans JC, Laybourn-Parry J (1997) Temporal patterns of primary production in a large ultraoligotrophic Antarctic freshwater lake. Polar Biol 18:363–370. doi:10.1007/s003000050201

    Article  Google Scholar 

  • Bonilla S, Villeneuve V, Vincent WF (2005) Benthic and planktonic algal communities in a high arctic lake: pigment structure and contrasting responses to nutrient enrichment. J Phycol 41:1120–1130

    Article  CAS  Google Scholar 

  • Carpenter SR (2008) Phosphorus control is critical to mitigating eutrophication. Proc Natl Acad Sci USA 105:11039–11040. doi:10.1073/pnas.0806112105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christie P (1987) Nitrogen in two contrasting Antarctic bryophyte communities. J Ecol 75:73–93. doi:10.2307/2260537

    Article  CAS  Google Scholar 

  • Davey A (1983) Effects of abiotic factors on nitrogen fixation by blue-green algae in Antarctica. Polar Biol 2:95–100. doi:10.1007/BF00303174

    Article  CAS  Google Scholar 

  • Davey MC (1993) Carbon and nitrogen dynamics in a small pond in the maritime Antarctic. Hydrobiologia 257:165–175. doi:10.1007/BF00765009

    Article  CAS  Google Scholar 

  • Devol AH (2003) Solution to a marine mystery. Nature 422:575–576. doi:10.1038/422575a

    Article  CAS  PubMed  Google Scholar 

  • Dore JE, Priscu JC (2001) Phytoplankton phosphorus deficiency and alkaline phosphatase activity in the McMurdo Dry Valley lakes, Antarctica. Limnol Oceanogr 46(6):1331–1346. doi:10.4319/lo.2001.46.6.1331

    Article  CAS  Google Scholar 

  • Fernández-Valiente E, Quesada A, Howard-Williams C, Hawes I (2001) N2-fixation in cyanobacterial mats from ponds on the McMurdo Ice Shelf, Antarctica. Microb Ecol 42:338–349. doi:10.1007/s00248-001-1010-z

    Article  PubMed  Google Scholar 

  • Hansson L-A (1992) Factors regulating periphytic algal biomass. Limnol Oceanogr 37(2):322–328. doi:10.4319/lo.1992.37.2.0322

    Article  CAS  Google Scholar 

  • Hawes I, Howard-Williams C, Pridmore RD (1993) Environmental control of microbial biomass in the ponds of the McMurdo Ice Shelf, Antarctica. Arch Hydrobiol 127:271–287

    Google Scholar 

  • Hodgson DA, Vyverman W, Verleyen E, Sabbe K, Leavitt PR, Taton A, Squier AH, Keely BJ (2004) Environmental factors influencing the pigment composition of in situ benthic microbial communities in east Antarctic lakes. Aquatic Microb Ecol 37:247–263. doi:10.3354/ame037247

    Article  Google Scholar 

  • Howard-Williams C, Priscu J, Vincent WF (1989) Nitrogen dynamics in two Antarctic streams. Hydrobiologia 172:51–61. doi:10.1007/BF00031612

    Article  CAS  Google Scholar 

  • Howard-Williams C, Pridmore R, Broady P, Vincent WF (1990) Environmental and biological variability in the McMurdo ice Shelf Ecosystem. In: Kerry KR, Hempel G (eds) Antarctic ecosystems: ecological change and conservation. Springer, Berlin, pp 23–31

    Chapter  Google Scholar 

  • Imura S, Bando T, Saito S, Seto K, Kanda H (1999) Benthic moss pillars in Antarctic lakes. Polar Biol 22:137–140. doi:10.1007/s003000050401

    Article  Google Scholar 

  • Imura S, Bando T, Seto K, Ohtani S, Kudoh S, Kanda H (2003) Distribution of aquatic mosses in the Sôya Coast region, East Antarctica. Polar Biosci 16:1–10

    Google Scholar 

  • Kaup E (1994) Annual primary production of phytoplankton in Lake Verkhneye, Schirmacher Oasis, Antarctica. Polar Biol 14:433–439. doi:10.1007/BF00239045

    Article  Google Scholar 

  • Kaup E (2005) Development of anthropogenic eutrophication in lakes of the Schirmacher Oasis, Antarctica. Proc Int Assoc Theor Appl Limnol 29(2):678–682

    CAS  Google Scholar 

  • Koretsky CM, Haas JR, Miller D, Ndenga NT (2006) Seasonal variations in pore water and sediment geochemistry of littoral lake sediments (Asylum Lake, MI, USA). Geochem Trans 7:11. doi:10.1186/1467-4866-7-11

    Article  PubMed  PubMed Central  Google Scholar 

  • Kudoh S, Tanabe Y, Matsuzaki M, Imura S (2009) In situ photochemical activity of the phytobenthic communities in two Antarctic lakes. Polar Biol 32(11):1617–1627. doi:10.1007/s00300-009-0660-z

    Article  Google Scholar 

  • Lauro FM, DeMaere MZ, Yau S, Brown MV, Ng C, Wilkins D, Raftery MJ, Gibson JA, Andrews-Pfannkoch C, Lewis M, Hoffman JM, Thomas T, Cavicchioli R (2011) An integrative study of a meromictic lake ecosystem in Antarctica. ISME J 5:879–895. doi:10.1038/ismej.2010.185

    Article  CAS  PubMed  Google Scholar 

  • Laybourn-Parry J (2002) Survival mechanisms in Antarctic lakes. Philos Trans R Soc Lond B 357:863–869. doi:10.1098/rstb.2002.1075

    Article  CAS  Google Scholar 

  • Laybourn-Parry J, Wadham J (2014) Antarctic lakes. Oxford University Press, Oxford. doi:10.1093/acprof:oso/9780199670499.001.0001

    Book  Google Scholar 

  • Laybourn-Parry J, Quayle WC, Henshaw T, Ruddel A, Marchant HJ (2001) Life on the edge: the plankton and chemistry of Beaver Lake an ultra-oligotrophic epishelf lake, Antarctica. Freshw Biol 46:1205–1217. doi:10.1046/j.1365-2427.2001.00741.x

    Article  Google Scholar 

  • Lennihan R, Chapin DM, Dickson LG (1994) Nitrogen fixation and photosynthesis in high arctic forms of Nostoc commune. Can J Bot 72:940–945. doi:10.1139/b94-119

    Article  Google Scholar 

  • Liengen T, Olsen RA (1997) Nitrogen fixation by free-living cyanobacteria from different coastal sites in a high Arctic tundra, Spitsbergen. Arct Alp Res 4:470–477

    Article  Google Scholar 

  • Line MA (1992) Nitrogen fixation in the sub-Antarctic Macquire Island. Polar Biol 11:601–606. doi:10.1007/BF00237954

    Article  Google Scholar 

  • Lizotte MP, Sharp TR, Priscu JC (1996) Phytoplankton dynamics in the stratified water column of Lake Bonney Antarctic. 1. Biomass and productivity during the winter–spring transition. Polar Biol 16:155–162. doi:10.1007/BF02329203

    Article  Google Scholar 

  • Miura H, Maemoku H, Igarashi A, Moriwaki K (1998) Late quaternary raised beach deposits and radiocarbon dates of marine fossils around Lützow-Holm Bay. Special map series of NIPR 6

  • Müller B, Finger D, Sturm M, Prasuhn V, Haltmeier T, Bossard P, Hoyle C, Wüest A (2007) Present and past bio-available phosphorus budget in the ultra-oligotrophic Lake Brienz. Aquatic Sci 69:227–239. doi:10.1007/s00027-007-0871-8

    Article  Google Scholar 

  • Nakatsubo T, Ino Y (1987) Nitrogen cycling in an Antarctic ecosystem 2. Estimation of the amount of nitrogen fixation in a moss community on East Ongul Island. Ecol Res 2:31–40. doi:10.1007/BF02348617

    Article  Google Scholar 

  • Paerl HW, Pinckney JL, Steppe TF (2000) Cyanobacterial-bacterial mat consortia: examining the functional unit of microbial survival and growth in extreme environments. Environ Microbiol 2(1):11–12. doi:10.1046/j.1462-2920.2000.00071.x

    Article  CAS  PubMed  Google Scholar 

  • Pandey KD, Kashyap AK, Gupta RK (1992) Nitrogen fixation by cyanobacteria associated with moss communities in Schirmacher Oasis, Antarctica. Israel J Bot 41:187–198

    CAS  Google Scholar 

  • Pearce DA, Galand PE (2008) Microbial biodiversity and biogeography. In: Vincent WF, Laybourn-Parry J (eds) Polar lakes and rivers. Oxford University Press, Oxford, pp 213–230

    Chapter  Google Scholar 

  • Priscu JC (1995) Phytoplankton nutrient deficiency in lakes of the McMurdo Dry Valleys, Antarctica. Freshw Biol 34:215–227

    Article  Google Scholar 

  • Rautio M, Vincent WF (2006) Benthic and pelagic food resources for zooplankton in shallow high-latitude lakes and ponds. Freshw Biol 51:1038–1052

    Article  CAS  Google Scholar 

  • Schmidt SK, Reed SC, Nemergut DR, Grandy AS, Cleveland CC, Weintraub MN, Hill AW, Costello EK, Meyer AF, Neff JC, Martin AM (2008) The earliest stages of ecosystem succession in high-elevation (5000 metres above sea level), recently deglaciated soils. Proc R Soc B 275:2793–2802. doi:10.1098/rspb.2008.0808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith VR, Russell S (1982) Acetylene reduction by bryophite cyanobacteria associations on a Subantarctic island. Polar Biol 1:153–157. doi:10.1007/BF00287001

    Article  CAS  Google Scholar 

  • Sterner RW (2008) On the phosphorus limitation paradigm for lakes. Int Rev Hydrobiol 93:433–445. doi:10.1002/iroh.200811068

    Article  CAS  Google Scholar 

  • Strous M, Jetten MSM (2004) Anaerobic oxidation of methane and ammonium. Annu Rev Microbiol 58:99–117. doi:10.1146/annurev.micro.58.030603.123605

    Article  CAS  PubMed  Google Scholar 

  • Takano Y, Tyler JJ, Kojima H, Yokoyama Y, Tanabe Y, Sato T, Ogawa NO, Ohkouchi N, Fukui M (2012) Holocene lake development and glacial-isostatic uplift at Lake Skallen and Lake Oyako; Lützow-Holm Bay; East Antarctica: based on biogeochemical facies and molecular signatures. Appl Geochem 27(12):2546–2559. doi:10.1016/j.apgeochem.2012.08.009

    Article  CAS  Google Scholar 

  • Tanabe Y, Kudoh S (2012) Possible ecological implications of floating microbial assemblages lifted from the lakebed on an Antarctic lake. Ecol Res 27:359–367. doi:10.1007/s11284-011-0907-3

    Article  Google Scholar 

  • Tanabe Y, Kudoh S, Imura S, Fukuchi M (2008) Phytoplankton blooms under dim and cold conditions in freshwater lakes of East Antarctica. Polar Biol 31:199–208. doi:10.1007/s00300-007-0347-2

    Article  Google Scholar 

  • Tanabe Y, Ohtani S, Kasamatsu N, Fukuchi M, Kudoh S (2010) Photophysiological responses of phytobenthic communities to the strong light and UV in Antarctic shallow lakes. Polar Biol 33(1):85–100. doi:10.1007/s00300-009-0687-1

    Article  Google Scholar 

  • Tarton A, Wilmotte A, Šmarda J, Elster J, Komárek J (2011) Plectolyngbya hodgsonii: a novel filamentous cyanobacterium from Antarctic lakes. Polar Biol 34(2):181–191. doi:10.1007/s00300-010-0868-y

    Article  Google Scholar 

  • Tewari SD, Pant G (2004) Some moss collections from Dakshin Gangotri, Antarctica. Bryol Times 91:7

    Google Scholar 

  • Urban N, Dinkel C, Wehrli B (1997) Solute transfer across the sediment surface of a eutrophic lake: I. Porewater profiles from dialysis samplers. Aquat Sci 59:1–25. doi:10.1007/BF02522546

    Article  CAS  Google Scholar 

  • Velázquez D, López-Bueno A, de Cárcer DA, de Los Ríos A, Alcamí A, Quesada A (2016) Ecosystem function decays by fungal outbreaks in Antarctic microbial mats. Sci Res 6:22954. doi:10.1038/srep22954

    Google Scholar 

  • Villeneuve V, Vincent WF, Komarek J (2001) Community structure and microhabitat characteristics of cyanobacterial mats in an extreme high Arctic environment: Ward Hunt Lake. In: Elster J, Seckbach J, Vincent WF, Lhotsky O (eds) Algae and extreme environments. Nova Hedwigia Beihefte 123:199–224

  • Vincent WF (1981) Production strategies in Antarctic inland waters: phytoplankton eco-physiology in a permanently ice-covered lake. Ecology 62(5):1215–1224. doi:10.2307/1937286

    Article  Google Scholar 

  • Vincent WF (2000) Cyanobacterial dominance in the polar regions. In: Whitton B, Potts M (eds) Ecology of the cyanobacteria: their diversity in space and time. Kluwer Academic, Dordrecht, pp 321–340

    Google Scholar 

  • Vincent WF, Howard-Williams C (1994) Nitrate-rich inland waters of the Ross Ice Shelf region, Antarctica. Antarct Sci 6:339–346. doi:10.1017/S0954102094000519

    Article  Google Scholar 

  • Vincent WF, Quesada A (2012) Cyanobacteria in high latitude lakes, rivers and seas. In: Whitton BA (ed) Ecology of cyanobacteria II—their diversity in space and time. Springer, Dordrecht, pp 371–3853. doi:10.1007/978-94-007-3855-3_13

    Google Scholar 

  • Vincent WF, Vincent CL (1982) Factors controlling phytoplankton production in Lake Vanda (77S). Can J Fish Aquat Sci 39:1602–1609. doi:10.1139/f82-216

    Article  Google Scholar 

  • Vincent WF, Hobbie JE, Laybourn-Parry J (2008) Introduction to the limnology of high-latitude lake and river ecosystems. In: Vincent WF, Laybourn-Parry J (eds) Polar lakes and rivers. Oxford University Press, Oxford, pp 1–23. doi:10.1093/acprof:oso/9780199213887.003.0001

    Chapter  Google Scholar 

  • Wersin P, Höhener P, Giovanoli R, Stumm W (1991) Early diagenetic influences on iron transformations in a freshwater lake sediment. Chem Geol 90:232–252. doi:10.1016/0009-2541(91)90102-W

    Article  Google Scholar 

  • Yamamuro M, Koike I (1998) Concentrations of nitrogen in sandy sediments of a eutrophic estuarine lagoon. Hydrobiologia 386:37–44. doi:10.1023/A:1003414028040

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a research grant of a project under the Centre for the Promotion of Integrated Sciences (CPIS) of the Graduate University for Advanced Studies (SOKENDAI) and by JSPS KAKENHI Grant Numbers 26310213 and 21810035. The authors acknowledge the members of the 51st and 53rd Japanese Antarctic Research Expedition for their field support, particularly the summer party leaders, Prof. Y. Motoyoshi and Prof. H. Yamagishi, for their logistic support. We also thank Ms. C. Ôuchida and Prof. J. Kanda of Tokyo University of Marine Science and Technology for assistance and for providing the nutrient analysis facilities and Dr. E. Cooper of University of Tromsø for English proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukiko Tanabe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanabe, Y., Yasui, S., Osono, T. et al. Abundant deposits of nutrients inside lakebeds of Antarctic oligotrophic lakes. Polar Biol 40, 603–613 (2017). https://doi.org/10.1007/s00300-016-1983-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-016-1983-1

Keywords

Navigation