Skip to main content
Log in

Phylogenetic relationships of endemic Antarctic species of Staurotheca Allman, 1888 (Cnidaria, Hydrozoa)

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Staurotheca is a well-characterized genus of benthic hydrozoans mostly restricted to the Antarctic ecosystem. Nineteen out of the 23 valid known species are endemic to the continental Antarctic region (High Antarctica and Scotia Ridge). The genus has proved to be monophyletic, but phylogenetic relationships among its species are practically unknown. In order to improve our understanding of the phylogenetic relationships among species of Staurotheca, and evaluate the evolution of some of their most important morphological characters, partial sequences of the mitochondrial 16S rRNA gene, mitochondrial cytochrome c oxidase subunit 3 (CO3) and nuclear calmodulin (CaM) were obtained for ten species of Staurotheca and one species of Antarctoscyphus. The most remarkable result is the discovery of two well-supported, monophyletic groups, clearly distinguishable on morphological grounds as well, that may eventually reveal as separate genera. The Staurotheca compressa clade is characterized by having female gonothecae strongly ornamented with digitiform projections and resting on a special supporting structure and by having larger microbasic mastigophores smaller than 19 µm. The second main clade has unclear relationships among its members, although there are two well-supported clades, one formed by Staurotheca pachyclada and Staurotheca polarsterni, morphologically characterized by the presence of distinct stem and the absence of both anastomoses and mushroom-shaped diaphragm, and the other consisting of Staurotheca vanhoeffeni, Staurotheca densa, Staurotheca nonscripta and Staurotheca glomulosa (the last two likely conspecific), morphologically characterized by having colonies with a closely-knit mesh appearance because of frequent branching, anastomoses and absence of main stem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Belinky F, Szitenberg A, Goldfarb I, Feldstein T, Wörheide G, Ilan M, Huchon D (2012) ALG11—a new variable DNA marker for sponge phylogeny: comparison of phylogenetic performances with the 18S rDNA and the COI gene. Mol Phylogenet Evol 63:702–713

    Article  CAS  PubMed  Google Scholar 

  • Clark A, Johnston NM (2003) Antarctic marine benthic diversity. Oceanogr Mar Biol 41:47–114

    Google Scholar 

  • Cunningham CW, Buss LW (1993) Molecular evidence for multiple episodes of paedomorphosis in the Family Hydractiniidae. Biochem Syst Ecol 21(1):57–69

    Article  CAS  Google Scholar 

  • Felsenstein J (1978) Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 27:401–410

    Article  Google Scholar 

  • Govindarajan AF, Piraino S, Gravili C, Kubota S (2005) Species identification of bivalve-inhabiting marine hydrozoans of the genus Eugymnanthea. Invert Biol 124:1–10

    Article  Google Scholar 

  • Higgins D, Thompson J, Gibson T, Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  PubMed Central  Google Scholar 

  • Huchon D, Madsen O, Sibbald MJ, Ament K, Stanhope MJ, Catzeflis F, de Jong WW, Douzery EJ (2002) Rodent phylogeny and a timescale for the evolution of Glires: evidence from an extensive taxon sampling using three nuclear genes. Mol Biol Evol 19:1053–1065

    Article  CAS  PubMed  Google Scholar 

  • Koubbi P, De Broyer C, Griffiths H et al (2014) Chapter 12. Conclusions: present and future of Southern Ocean Biogeography. In: De Broyer C et al (eds) Biogeographic Atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, pp 470–475

    Google Scholar 

  • Lindner A, Cairns SD, Cunningham CW (2008) From offshore to onshore: multiple origins of shallow-water corals from deep-sea ancestors. PLoS One 3:e2429

    Article  PubMed  PubMed Central  Google Scholar 

  • Maddison WP, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis. Version 2.75 http://mesquiteproject.org

  • Maronna MM, Miranda TP, Peña Cantero AL, Barbeitos MS, Marques AC (2016) Towards a phylogenetic classification of Leptothecata (Cnidaria, Hydrozoa). Sci Rep 6:18075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinsen ES, Perkins SL, Schall JJ (2008) A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): evolution of life-history traits and host switches. Mol Phylogenet Evol 47:261–273

    Article  CAS  PubMed  Google Scholar 

  • Miglietta MP, Piraino S, Kubota S, Schuchert P (2007) Species in the genus Turritopsis (Cnidaria, Hydrozoa): a molecular evaluation. J Syst Biol Evol Res 45:11–19

    Article  Google Scholar 

  • Mitchell A, Mitter C, Regier JC (2000) More taxa or more characters revisited: combining data from nuclear protein-encoding genes for phylogenetic analyses of Noctuoidea (Insecta: Lepidoptera). Syst Biol 49:202–224

    Article  CAS  PubMed  Google Scholar 

  • Moura CJ, Harris DJ, Cunha MR, Rogers AD (2008) DNA barcoding reveals cryptic diversity in marine hydroids (Cnidaria, Hydrozoa) from coastal and deep-sea environments. Zool Scripta 37:93–108

    Google Scholar 

  • Pagel M (1999) The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Syst Biol 48:612–622

    Article  Google Scholar 

  • Peña Cantero AL (2012) Filling biodiversity gaps: benthic hydroids from the Bellingshausen Sea (Antarctica). Polar Biol 35:851–865

    Article  Google Scholar 

  • Peña Cantero AL (2014) Chapter 5.6. Benthic hydroids (Cnidaria: Hydrozoa). In: De Broyer C et al (eds) Biogeographic Atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, pp 103–106

    Google Scholar 

  • Peña Cantero AL, García Carrascosa AM (1995) Hidrozoos bentónicos de la campaña Antártida 8611. Publ Espec Inst Esp Oceanogr 19:1–148

    Google Scholar 

  • Peña Cantero AL, García Carrascosa AM (1999) Biogeographical distribution of the benthic thecate hydroids collected during the Spanish ‘‘Antártida 8611’’ expedition and comparison between Antarctic and Magellan benthic hydroid faunas. Sci Mar 63(Suppl 1):209–218

    Article  Google Scholar 

  • Peña Cantero AL, Vervoort W (2003a) Species of Staurotheca Allman, 1888 (Cnidaria: Hydrozoa: Sertulariidae) from US Antarctic expeditions, with the description of three new species. J Nat Hist 37:2653–2722

    Article  Google Scholar 

  • Peña Cantero AL, Vervoort W (2003b) Sertularia echinocarpa Allman, 1888, an unexpected new species of Staurotheca Allman, 1888 (Cnidaria; Hydrozoa; Sertulariidae). Zool Med Leiden 77:537–543

    Google Scholar 

  • Peña Cantero AL, Svoboda A, Vervoort W (1997) Species of Staurotheca Allman, 1888 (Cnidaria, Hydrozoa) from recent Antarctic expeditions with R.V. ‘Polarstern’, with the description of six new species. J Nat Hist 31:329–381

    Article  Google Scholar 

  • Peña Cantero AL, García Carrascosa AM, Vervoort W (1999) Two new species of Staurotheca Allman, 1888 (Cnidaria, Hydrozoa, Sertulariidae) from the Scotia Sea (Antarctica). Polar Biol 21:155–165

    Article  Google Scholar 

  • Peña Cantero AL, Sentandreu V, Latorre A (2010) Phylogenetic relationships of the endemic Antarctic benthic hydroids (Cnidaria, Hydrozoa): what does the mitochondrial 16S rRNA tell us about it? Polar Biol 33:41–57

    Article  Google Scholar 

  • Rambaut A, Drummond AJ (2007) Tracer version 1.4. http://beast.bio.ed.ac.uk/Tracer. Accessed 3 Feb 2009

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Schuchert P (2005) Species boundaries in the hydrozoan genus Coryne. Mol Phylogenet Evol 36:194–199

    Article  PubMed  Google Scholar 

  • Staden R, Beal K, Bonfield J (1999) The Staden package, 1998. In: Misener S, Krawetz S (eds) Computer methods in molecular biology. The Humana Press, Totowa, pp 115–130

    Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian Z, Liu G, Yin H, Luo J, Guan G et al (2013) Cytochrome c oxidase subunit III (COX3) gene, an informative marker for phylogenetic analysis and differentiation of Babesia species in China. Infect Genet Evol 18:13–17

    Article  CAS  PubMed  Google Scholar 

  • Vervoort W, Watson JE (2003) The Marine Fauna of New Zealand: Leptothecata (Cnidaria: Hydrozoa) (Thecate Hydroids). NIWA Biodivers Mem 119:1–538

    Google Scholar 

  • Zarowiecki MZ, Huyse T, Littlewood DT (2007) Making the most of mitochondrial genomes—markers for phylogeny, molecular ecology and barcodes in Schistosoma (Platyhelminthes: Digenea). Int J Parasitol 37:1401–1418

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was developed thanks to a research project (Ref. CTM2009-11128ANT) funded by the Ministerio de Ciencia e Innovación of Spain and the Fondo Europeo de Desarrollo Regional (FEDER). We thank Dr. Allen Collins, Smithsonian Institution, for his help and for providing us with the CO3 primers, and Maciek Lipski for carefully revising the English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Álvaro L. Peña Cantero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peña Cantero, Á.L., Sentandreu, V. Phylogenetic relationships of endemic Antarctic species of Staurotheca Allman, 1888 (Cnidaria, Hydrozoa). Polar Biol 40, 301–312 (2017). https://doi.org/10.1007/s00300-016-1954-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-016-1954-6

Keywords

Navigation