Skip to main content

Advertisement

Log in

Factors affecting regional diversity and distribution of freshwater microcrustaceans (Cladocera, Copepoda) at high latitudes

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Microcrustaceans (MCs) are an important component of freshwater ecosystems, and their local diversity is known to be driven by many factors. What are the relative contributions of these factors at the larger geographic scale? We analyzed the faunal richness and composition of freshwater Cladocera and Copepoda from 27 mainland and insular circumpolar regions (46°–85°N) to determine the main patterns of their species richness and distribution. The average warmest month air temperature was the primary factor affecting MC richness. Regional richness decreased sharply when the temperature dropped below 12–13 °C, and this effect was more pronounced for Cladocera. As a result, the Cladocera/Copepoda species ratio increased significantly with temperature. The total MC richness and cladoceran richness increased with the ice-free area of a region, while the copepod richness decreased on islands with increasing distance from the mainland. Copepod richness was lower in regions that were glaciated during the Quaternary period. Faunal composition significantly differed between cold and warm regions, as well as between the Palearctic and Nearctic, whereas it was affected by neither the glaciation history nor insularity. The contemporary climate had a stronger effect on the cladoceran distribution, whereas the copepods’ ranges were often restricted to a single continent. The former parts of the intercontinental land bridges are primarily inhabited by Holarctic or cosmopolitan species, with almost equal Nearctic and Palearctic components, which indicates repeated colonization events of these regions from various sources. These findings suggest a key role of contemporary climate (especially for cladocerans) and dispersal limitations (primarily for copepods) in structuring MC faunas at high latitudes, and they may help assess possible changes due to global warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdullahi BA (1990) The effect of temperature on reproduction in three species of cyclopoid copepods. Hydrobiologia 196(2):101–109. doi:10.1007/BF00006104

    Article  Google Scholar 

  • Abramova E, Tuschling K (2005) A 12-year study of the seasonal and interannual dynamics of mesozooplankton in the Laptev Sea: significance of salinity regime and life cycle patterns. Glob Planetary Change 48:141–164. doi:10.1016/j.gloplacha.2004.12.010

    Article  Google Scholar 

  • Adamowicz SJ, Purvis A (2005) How many branchiopod crustacean species are there? Quantifying the components of underestimation. Glob Ecol Biogeogr 14(5):455–468. doi:10.1111/j.1466-822X.2005.00164.x

    Article  Google Scholar 

  • Adams JM (1997) Global land environments since the last interglacial. Oak Ridge National Laboratory, TN, USA http://www.esd.ornl.gov/ern/qen/nerc.html

  • Allan JD (1977) An analysis of seasonal dynamics of a mixed population of Daphnia, and the associated cladoceran community. Freshw Biol 7(6):505–512. doi:10.1111/j.1365-2427.1977.tb01701.x

    Article  Google Scholar 

  • Azovsky AI (2000) Concept of scale in marine ecology: linking the words or the worlds? Web Ecol 1(1):28–34. doi:10.5194/we-1-28-2000

    Article  Google Scholar 

  • Azovsky AI (2011) Species–area and species–sampling effort relationships: disentangling the effects. Ecography 34(1):18–30. doi:10.1111/j.1600-0587.2010.06288.x

    Article  Google Scholar 

  • Azovsky AI, Garlitska LA, Chertoprud ES (2012) Broad-scale patterns in local diversity of marine benthic harpacticoid copepods (Crustacea). Mar Ecol-Prog Ser 460:63–77. doi:10.3354/meps277181

    Article  Google Scholar 

  • Bekker EI, Novichkova AA, Kotov AA (2014) New findings of Eurycercus Baird, 1843 (Cladocera: Anomopoda) in the Eastern Palaearctic. Zootaxa 3895(2):297–300. doi:10.11646/zootaxa.3895.2.11

    Article  PubMed  Google Scholar 

  • Bergersen R (1995) Is Greenland a zoogeographical unit of Its own? J Biogeogr 22(1):1–6. doi:10.2307/2846068

    Article  Google Scholar 

  • Bilton DT, Freeland JR, Okamura B (2001) Dispersal in freshwater invertebrates. Annu Rev Ecol Syst 32:159–181. doi:10.1146/annurev.ecolsys.32.081501.114016

    Article  Google Scholar 

  • Böcher J (1988) The Coleoptera of Greenland. Meddr Grønland Biosci 26:1–100

    Google Scholar 

  • Boxshall GA, Defaye D (2008) Global diversity of copepods (Crustacea: Copepoda) in freshwater. Hydrobiologia 595(1):195–207. doi:10.1007/s10750-007-9014-4

    Article  Google Scholar 

  • Boxshall GA, Defaye D (2009) World checklist of freshwater Copepoda species. World Wide Web electronic publication. http://fada.biodiversity.be/group/show/19. Accessed 10 July 2015

  • Briggs JC (1995) Global biogeography. Elsevier, Amsterdam

    Google Scholar 

  • Brown JH, Lomolino MV (1998) Biogeography, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Chapin FS, Sturm M, Serreze MC, McFadden JP, Key JR, Lloyd AH et al (2005) Role of land-surface changes in Arctic summer warming. Science 310(5748):657–660. doi:10.1126/science.1117368

    Article  CAS  PubMed  Google Scholar 

  • Clark PU, Mix AC (2002) Ice sheets and sea level of the last glacial maximum. Quaternary Sci Rev 21(1):1–7. doi:10.1029/01EO00133

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2001) Primer, user manual/tutorial, v5 edn. PRIMER-E Ltd, Plymouth

    Google Scholar 

  • Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation. Plymouth Marine Laboratory, Plymouth

    Google Scholar 

  • De Meester L, Gómez A, Okamura B, Schwenk K (2002) The monopolization hypothesis and the dispersal–gene flow paradox in aquatic organisms. Acta Oecol 23:121–135

    Article  Google Scholar 

  • Dodson S (1992) Predicting crustacean zooplankton species richness. Limnol Oceanogr 37(4):848–856. doi:10.4319/lo.1992.37.4.0848

    Article  Google Scholar 

  • Dubovskaya OP, Kotov AA, Korovchinsky NM, Smirnov NN, Sinev AY (2010) Zooplankton of lakes in the spurs of the Putorana Plateau and adjacent territories (North of Krasnoyarsk Krai). Contemp Probl Ecol 3(4):401–434. doi:10.1134/S1995425510040065

    Article  Google Scholar 

  • Eidesen PB, Alsos IG, Popp M, Stensrud Ǿ, Suda J, Brochmann C (2007) Nuclear vs. plastid data: complex Pleistocene history of a circumpolar key species. Mol Ecol 16:3902–3925. doi:10.1111/j.1365-294X.2007.03425.x

    Article  CAS  PubMed  Google Scholar 

  • Farkas T, Herodek S (1964) The effect of environmental temperature on the fatty acid composition of crustacean plankton. J Lipid Res 5(3):369–373. doi:10.1007/s11745-006-5111-9

    CAS  PubMed  Google Scholar 

  • Figuerola J, Green AJ (2002) Dispersal of aquatic organisms by waterbirds: a review of past research and priorities for future studies. Freshw Biol 47(3):483–494. doi:10.1046/j.1365-2427.2002.00829.x

    Article  Google Scholar 

  • Fryer G (1996) Diapause, a potent force in the evolution of freshwater crustaceans. Hydrobiologia 320:1–14. doi:10.1007/BF00016800

    Article  Google Scholar 

  • Gibson JAE, Bayly IAE (2007) New insights into the origins of crustaceans of Antarctic lakes. Antarct Sci 19:157–164. doi:10.1017/S0954102007000235

    Article  Google Scholar 

  • Gillooly JF (2000) Effect of body size and temperature on generation time in zooplankton. J Plankton Res 22(2):241–251. doi:10.1093/plankt/22.2.241

    Article  Google Scholar 

  • Gislason GM (2005) Origin of freshwater fauna of the North-Atlantic islands: present distribution in relation to climate and possible migration routes. Int Ver Theor Angew Limnol Verh 29(1):198–203

    Google Scholar 

  • Hampton SE, Izmest’eva LE, Moore MV, Katz SL, Dennis B, Silow EA (2008) Sixty years of environmental change in the world’s largest freshwater lake–Lake Baikal. Siberia. Glob Change Biol 14(8):1947–1958. doi:10.1111/j.1365-2486.2008.01616.x

    Article  Google Scholar 

  • Havel JE, Shurin JB (2004) Mechanisms, effects, and scales of dispersal in freshwater zooplankton. Limnol Oceanogr 49(4):1229–1238. doi:10.4319/lo.2004.49.4_part_2.1229

    Article  Google Scholar 

  • Hebert PDN, Hann BJ (1986) Patterns in the composition of arctic tundra pond microcrustacean communities. Can J Fish Aquat Sci 43:1416–1425. doi:10.1139/f86-175

    Article  Google Scholar 

  • Heip C, Smol N (1976) Influence of temperature on the reproductive potential of two brackish-water harpacticoids (Crustacea: Copepoda). Mar Biol 35(4):327–334. doi:10.1007/BF00386643

    Article  Google Scholar 

  • Hessen DO, Walseng B (2008) The rarity concept and the commonness of rarity in freshwater zooplankton. Freshw Biol 53(10):2026–2035. doi:10.1111/j.1365-2427.2008.02026.x

    Article  Google Scholar 

  • Hessen DO, Bakkestuen V, Walseng B (2007) Energy input and zooplankton species richness. Ecography 30(6):749–758. doi:10.1111/j.2007.0906-7590.05259.x

    Article  Google Scholar 

  • Hobæk A, Manca M, Andersen T (2002) Factors influencing species richness in lacustrine zooplankton. Acta Oecol 23(3):155–163. doi:10.1016/S1146-609X(02)01147-5

    Article  Google Scholar 

  • Hodkinson ID, Coulson SJ, Webb NR (2004) Invertebrate community assembly along proglacial chronosequences in the high Arctic. J Anim Ecol 73(3):556–568. doi:10.1111/j.0021-8790.2004.00829.x

    Article  Google Scholar 

  • Hodkinson ID, Babenko A, Behan-Pelletier V, Böcher J, Boxshall G, Brodo F et al (2013) Terrestrial and freshwater invertebrates. Arctic Biodiversity Assessment. Status and Trends in Arctic Biodiversity. Akureyri, Iceland: Conservation of Arctic Flora and Fauna pp 193–223

  • Holt BG, Lessard JP, Borregaard MK, Fritz SA, Araújo MB, Dimitrov D et al (2013) An update of Wallace’s zoogeographic regions of the world. Science 339(6115):74–78. doi:10.1126/science.1228282

    Article  CAS  PubMed  Google Scholar 

  • Hołynska M (2011) Latitudinal gradients in diversity of the freshwater copepod family Cyclopidae (Copepoda, Cyclopoida). Stud Freshw Copepoda Vol Honour Bernard Dussart 16:245

    Article  Google Scholar 

  • Jones NT, Gilbert B (2016) Changing climate cues differentially alter zooplankton dormancy dynamics across latitudes. J Anim Ecol (Accepted manuscript online: 21 Nov 2015) doi:10.1111/1365-2656.12474

  • Korhola A (1999) Distribution patterns of Cladocera in Subarctic Fennoscandian lakes and their potential in environmental reconstruction. Ecography 22:357–373. doi:10.13140/2.1.4679.3927

    Article  Google Scholar 

  • Korovchinsky NM (2007) Redescription of Latona setifera (OF Müller, 1776) from the type locality and reinstatement of Latona glacialis Wesenberg-Lund, 1894 (Crustacea: Cladocera: Sididae) as a valid species. Steenstrupia 30(1):1–19

    Google Scholar 

  • Kotov A, Forró L, Korovchinsky NM, Petrusek A (2013) World checklist of freshwater Cladocera species. World Wide Web electronic publication. http://fada.biodiversity.be/group/show/17

  • Makhutova ON, Gladyshev MI, Sushchik NN, Dubovskaya OP, Buseva ZF, Fefilova EB et al (2014) Comparison of fatty acid composition of cladocerans and copepods from lakes of different climatic zones. Contemp Probl Ecol 7(4):474–483. doi:10.1134/S1995425514040076

    Article  Google Scholar 

  • Millette KL, Xu S, Witt JDS, Cristescu ME (2011) Pleistocene-driven diversification in freshwater zooplankton: genetic patterns of refugial isolation and postglacial recolonization in Leptodora kindtii. Limnol Oceanogr 56:1725–1736. doi:10.4319/lo.2011.56.5.1725

    Article  Google Scholar 

  • Moritz RE, Bitz CM, Steig IJ (2002) Dynamics of recent climate change in the Arctic. Science 297:1497–1502. doi:10.1126/science.1076522

    Article  CAS  PubMed  Google Scholar 

  • Mouquet N, Munguia P, Kneitel JM, Miller TE (2003) Community assembly time and the relationship between local and regional species richness. Oikos 103(3):618–626

    Article  Google Scholar 

  • Novichkova AA, Chertoprud ES (2015a) Fauna of microcrustaceans (Cladocera: Copepoda) of shallow freshwater ecosystems of Wrangel Island (Russian Far East). J Nat Hist 49(45–48):2955–2968. doi:10.1080/00222933.2015.1056269

    Article  Google Scholar 

  • Novichkova AA, Chertoprud ES (2015b) The freshwater crustaceans (Cladocera, Copepoda) of Bering Island (Commander Islands, Russian Far East): Species richness and taxocene structure. J Nat Hist (Published online: 10 Dec 2015) doi:10.1080/00222933.2015.1113319

  • Novichkova AA, Chertoprud ES, Gíslason GM (2014) Freshwater Crustacea (Cladocera, Copepoda) of Iceland: taxonomy, ecology, and biogeography. Polar Biol 37:1755–1767. doi:10.1007/s00300-014-1559-x

    Article  Google Scholar 

  • Patalas K (1990) Diversity of the zooplankton communities in Canadian lakes as a function of climate. Int Ver Theor Angew 24:360–368

    Google Scholar 

  • Peterson WT (2001) Patterns in stage duration and development among marine and freshwater calanoid and cyclopoid copepods: a review of rules, physiological constraints, and evolutionary significance. Hydrobiologia 453(1):91–105. doi:10.1007/0-306-47537-5_8

    Article  Google Scholar 

  • Pinel-Alloul B (1995) Spatial heterogeneity as a multiscale characteristic of zooplankton community. Space partition within aquatic ecosystems. Springer, Netherlands, pp 17–42

    Chapter  Google Scholar 

  • Pinel-Alloul B, André A, Legendre P, Cardille JA, Patalas K, Salki A (2013) Large-scale geographic patterns of diversity and community structure of pelagic crustacean zooplankton in Canadian lakes. Glob Ecol Biogeogr 22(7):784–795. doi:10.1111/geb.12041

    Article  Google Scholar 

  • Rautio M, Bayly I, Gibson J, Nyman M (2008) Polar Lakes and Rivers. In: Vincent WF, Laybourn-Parry J (eds) Zooplankton, zoobenthos in high-latitude water bodies. Oxford University Press, Oxford, pp 231–247

    Google Scholar 

  • Rautio M, Dufresne F, Laurion I, Bonilla S, Warwick FV, Christoffersen KS (2011) Shallow freshwater ecosystems of the circumpolar arctic. Ecoscience 18(3):204–222. doi:10.2980/18-3-3463

    Article  Google Scholar 

  • Rombouts I, Beaugrand G, Ibaňez F, Gasparini S, Chiba S, Legendre L (2009) Global latitudinal variations in marine copepod diversity and environmental factors. Proc Roy Soc London B: Biol Sci 276:3053–3062. doi:10.1098/rspb.2009.0742

    Article  Google Scholar 

  • Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ruggiero A, Werenkraut V (2007) One-dimensional analyses of Rapoport’s rule reviewed through meta-analysis. Glob Ecol Biogeogr 16(4):401–414. doi:10.1111/j.1466-8238.2006.00303.x

    Article  Google Scholar 

  • Samchyshyna L, Hansson L-A, Christoffersen K (2008) Patterns in the distribution of Arctic freshwater zooplankton related to glacial history. Polar Biol 31:1427–1735. doi:10.1007/s00300-008-0482-4

    Article  Google Scholar 

  • Schartau AK, Hobæk A, Faafeng B, Halvorsen G, Løvik JE, Nøst T et al (1997) Diversity of zooplankton and littoral crustaceans in freshwater natural gradients and effects of pollution, encroachments and introductions (in Norwegian with English abstract). NINA Temah 14:3768–3797

    Google Scholar 

  • Semenova LA, Aleksyuk VA, Dergach SM, Leleko TI (2000) Species diversity of zooplankton in the water bodies of the Ob north. Her Ecol Dendrol Landsc Sci 10:1–12 (in Russian, with English summary)

    Google Scholar 

  • Serreze MC, Francis JA (2006) The Arctic amplification debate. Clim Change 76(3–4):241–264. doi:10.1007/s10584-005-9017-y

    Article  CAS  Google Scholar 

  • Shurin JB, Havel JE, Leibold MA, Pinel-Alloul B (2000) Local and regional zooplankton species richness: a scale-independent test for saturation. Ecology 81(11):3062–3073. doi:10.2307/177401

    Article  Google Scholar 

  • Smyntek PM, Teece MA, Schulz KL, Storch AJ (2008) Taxonomic differences in the essential fatty acid composition of groups of freshwater zooplankton relate to reproductive demands and generation time. Freshw Biol 53(9):1768–1782. doi:10.1111/j.1365-2427.2008.02001.x

    Article  CAS  Google Scholar 

  • Stishov M (2004) Ostrov Vrangelya – etalon prirody i prirodnaya anomalia (in Russian). Izdatelstvo Mariiskogo Poligragrafcombinata, Ioshkar-Ola

  • Strecker AL, Milne R, Arnott SE (2008) Dispersal limitation and climate-related environmental gradients structure microcrustacean composition in freshwater lakes, Ellesmere Island Canada. Can J Fish Aquat Sci 65(9):1905–1918

    Article  Google Scholar 

  • Sweetman JN, Smol JP (2006) A guide to the identification of cladoceran remains (Crustacea, Branchiopoda) in Alaskan lake sediments (with 118 figures in the text and 1 appendix). Arch Hydrobiol 151(4):353–394

    Google Scholar 

  • Sweetman JN, Rühland KM, Smol JP (2010) Environmental and spatial factors influencing the distribution of cladocerans in lakes across the central Canadian Arctic treeline region. J Limnol 69(1):76–87. doi:10.3274/JL10-69-1-07

    Article  Google Scholar 

  • Symons CC, Pedruski MT, Arnott SE, Sweetman JN (2014) Spatial, environmental, and biotic determinants of zooplankton community composition in subarctic lakes and ponds in Wapusk National Park Canada. Arct Antarct Alp Res 46(1):159–190. doi:10.1657/1938-4246-46.1.159

    Article  Google Scholar 

  • Thompson PL, St-Jacques MC, Vinebrooke RD (2008) Impacts of climate warming and nitrogen deposition on alpine plankton in lake and pond habitats: an in vitro experiment. Arct Antarct Alp Res 40(1):192–198

    Article  Google Scholar 

  • Vijverberg J (1980) Effect of temperature in laboratory studies on development and growth of Cladocera and Copepoda from Tjeukemeer The Netherlands. Freshw Biol 10(4):317–340. doi:10.1111/j.1365-2427.1980.tb01206.x

    Article  Google Scholar 

  • Visconti A, Manca M, De Bernardi R (2008) Eutrophication-like response to climate warming: an analysis of Lago Maggiore (N. Italy) zooplankton in contrasting years. J Limnol 67(2):87–92. doi:10.4081/jlimnol.2008.87

    Article  Google Scholar 

  • Walker DA, Raynolds MK, Daniels FJA, Einarsson E, Elvebakk A, Gould WA et al (2005) The circumpolar Arctic vegetation map. J Veg Sci 16:267–282

    Article  Google Scholar 

  • Weider LJ, Hobæk A (1997) Postglacial dispersal, glacial refugia, and clonal structure in Russian/Siberian populations of the arctic Daphnia pulex complex. Heredity 78:363–372. doi:10.1038/hdy.1997.59

    Article  Google Scholar 

  • Wells JBJ (2007) An annotated checklist and keys to the species of Copepoda Harpacticoida (Crustacea). Magnolia Press, Auckland

    Google Scholar 

  • Xu S, Hebert PDN, Kotov AA, Cristescu ME (2009) The noncosmopolitanism paradigm of freshwater zooplankton: insights from the global phylogeography of the predatory cladoceran Polyphemus pediculus. Mol Ecol 18:5161–5179. doi:10.1111/j.1365-294X.2009.04422.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Russian Foundation for Basic Research (grant nos. 15-04-02245 and 14-04-01149) and the Russian Scientific Foundation (grant no. 14-50-00029). The fieldwork in Svalbard was supported by the Norwegian Institute for Nature Research (NINA) and the Research Council of Norway (in the framework of the project FREMONEC—Effect of climate change and related stressors on fresh and brackish water ecosystems in Svalbard). We also thank the Norwegian Institute for Nature Research (NINA) for using their HARPOST project data [Harpacticoid copepods (Harpacticoida) and ostracods (Ostracoda)—two unexplored crustacean groups of the Norwegian freshwater fauna] in the analysis and three POBI anonymous reviewers for their valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna A. Novichkova.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novichkova, A.A., Azovsky, A.I. Factors affecting regional diversity and distribution of freshwater microcrustaceans (Cladocera, Copepoda) at high latitudes. Polar Biol 40, 185–198 (2017). https://doi.org/10.1007/s00300-016-1943-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-016-1943-9

Keywords

Navigation