Skip to main content
Log in

Production of extracellular hydrolase enzymes by fungi from King George Island

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Fungi are known to produce a range of extracellular enzymes and other secondary metabolites. Investment in extracellular enzyme production may be an important element of the survival strategy of these fungi in maritime Antarctic soils. This study focuses on fungi that were isolated from ornithogenic, undisturbed and human-impacted soils collected from the Fildes Peninsula, King George Island, Antarctica, during the austral summer in February 2007. We (1) describe fungal diversity based on molecular approaches, (2) describe the thermal characteristics of the fungal isolates, and (3) screen extracellular hydrolase enzyme production (amylase and cellulase) by the isolates. Soil samples were cultured using the Warcup soil plating technique and incubated at 4 and 25 °C to allow basic thermal classification. In total, 101 isolates were obtained. All the isolates were screened at culture temperatures of 4 and 25 °C in order to detect activity of extracellular hydrolase enzymes. At 25 °C, ornithogenic penguin rookery soils recorded the lowest diversity of fungi, with little difference in diversity apparent between the other soils examined. At 4 °C, an undisturbed site recorded the lowest and a human-impacted site the highest diversity of fungi. The majority of the fungi identified in this study were in the mesophilic thermal class. Six strains possessed significant activity for amylase and 13 for cellulase at 25 °C. At 4 °C, four strains showed significant amylase and 22 significant cellulase activity. The data presented increase our understanding of microbial responses to environmental temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adams BJ, Bardgett RD, Ayres E, Wall DH, Aislabie J, Bamforth S, Bargagli R, Cary C, Cavacini P, Connell L, Convey P, Fell JW, Frati F, Hogg ID, Newsham KK, O’Donnell A, Russell N, Seppelt RD, Stevens MI (2006) Diversity and distribution of Victoria Land biota. Soil Biol Biochem 38:3003–3018

    Article  CAS  Google Scholar 

  • Ali SH, Alias SA, Siang HY, Smykla J, Pang KL, Guo SY, Convey P (2013) Studies on diversity of soil microfungi in the Horsund area, Spitsbergen. Pol Polar Res 34:39–54

    Google Scholar 

  • Alias SA, Smykla J, Ming CY, Rizman-Idid M, Convey P (2013) Diversity of microfungi in ornithogenic soils from Beaufort Island, continental Antarctic. Czech Pol Rep 3:44–156

    Google Scholar 

  • Arenz BE, Blanchette RA (2011) Distribution and abundance of soil fungi in Antarctica at sites on the Peninsula, Ross Sea Region and McMurdo Dry Valleys. Soil Biol Biochem 43:308–315

    Article  CAS  Google Scholar 

  • Arenz BE, Held BW, Jurgens JA, Blanchette RA (2011) Fungal colonization of exotic substrates in Antarctica. Fungal Divers 49:13–22

    Article  Google Scholar 

  • Azmi OR, Seppelt RD (1997) Fungi of the Windmill Islands, continental Antarctica: effect of temperature, pH and culture media on the growth of selected microfungi. Polar Biol 18:128–134

    Article  Google Scholar 

  • Azmi OR, Seppelt RD (1998) Broad scale distribution of microfungi in theWindmill Islands, continental Antarctica. Polar Biol 19:92–100

    Article  Google Scholar 

  • Beyer L, Bolter M (2000) Chemical and biological properties, formation, occurrence and classification of Spodic Cryosols in a terrestrial ecosystem of East Antarctica (Wilkes Land). Catena 39:95–119

    Article  CAS  Google Scholar 

  • Birgisson H, Delgado O, Arroyo LG, Hatti-Kaul R, Mattiasson B (2003) Cold-adapted yeast as producers of cold-active polygalacturonases. Extremophiles 7:185–193

    PubMed  CAS  Google Scholar 

  • Blackwell M (2011) The fungi: 1, 2, 3 … 5.1 million species? Am J Bot 98:426–438

    Article  PubMed  Google Scholar 

  • Block W (1984) Terrestrial microbiology, invertebrates and ecosystems. Antarctic Ecology, vol 1. Academic Press, London, pp 163–236

    Google Scholar 

  • Bokhorst S, Huiskes A, Convey P, Aerts R (2007) External nutrient inputs into terrestrial ecosystems of the Falkland Islands and the Maritime Antarctic region. Polar Biol 30:1315–1321

    Article  Google Scholar 

  • Bradner JR, Gillings M, Nevalainen KHM (1999) Qualitative assessment of hydrolytic activities in Antarctic microfungi grown at different temperatures on solid media. World J Microb Biot 15:131–132

    Article  Google Scholar 

  • Bridge PD, Spooner BM (2012) Non-lichenized Antarctic fungi: transient visitors or members of a cryptic ecosystem? Fungal Ecol 5:381–394

    Article  Google Scholar 

  • Brindha RJ, Mohan TS, Immanual G, Jeeva S, Packia Lekshmi NCJ (2011) Studies on amylase and cellulase enzyme activity of the fungal organisms causing spoilage in tomato. Eur J Exp Biol 1:90–96

    Google Scholar 

  • Broady PA (1996) Diversity, distribution and dispersal of Antarctic terrestrial algae. Biodivers Conserv 5:1307–1335

    Article  Google Scholar 

  • Brunati M, Rojas JL, Sponga F, Ciciliato I, Losi D, Göttlich E, de Hoog S, Genilloud O, Marinelli F (2009) Diversity and pharmaceutical screening of fungi from benthic mats of Antarctic lakes. Mar Genom 2:43–50

    Article  Google Scholar 

  • Caretta G, Del Frate G, Mangiarotti AM (1994) A record of Arthrobotrys tortor Jarowaja and Engyodontium album (Limber) de Hoog from Antarctica. Bol Micolog 9:9–13

    Google Scholar 

  • Carrasco M, Rozas JM, Barahona S, Alcaíno J, Cifuentes V, Baeza M (2012) Diversity and extracellular enzymatic activities of yeasts isolated from King George Island, the sub-Antarctic region. BMC Microbiol 12:251–259

    Article  PubMed  PubMed Central  Google Scholar 

  • Chown SL, Gaston KJ (2000) Island-hopping invaders hitch a ride with the tourists in South Georgia. Nature 408:905

    Article  CAS  Google Scholar 

  • Chown SL, Hull B, Gaston KJ (2005) Human impacts, energy availability and invasion across Southern Ocean Islands. Global Ecol Biogeogr 14:521–528

    Article  Google Scholar 

  • Connell L, Redman R, Craig S, Scorzetti G, Iszard M, Rodriguez R (2008) Diversity of soil yeasts isolated from South Victoria Land, Antarctica. Microbial Ecol 56:448–459

    Article  CAS  Google Scholar 

  • Convey P (2013) Antarctic ecosystems. In: Levin SA (ed) Encyclopedia of biodiversity, vol. 1, 2nd edn. San Diego, Elsevier, pp 179–188

    Chapter  Google Scholar 

  • Convey P, Smith RIL, Hodgson DA, Peat HJ (2000) The flora of the South Sandwich Islands, with particular reference to the influence of geothermal heating. J Biogeog 27:1279–1295

    Article  Google Scholar 

  • Convey P, Chown SL, Clarke A, Barnes DKA, Cummings V, Ducklow H, Frati F, Green TGA, Gordon S, Griffiths H, Howard-Williams C, Huiskes AHL, Laybourn-Parry J, Lyons B, McMinn A, Peck LS, Quesada A, Schiaparelli S, Wall D (2014) The spatial structure of Antarctic biodiversity. Ecol Monogr 84:203–244

    Article  Google Scholar 

  • Cowan DA, Chown SL, Convey P, Tuffin M, Hughes K, Pointing S, Vincent WF (2011) Non-indigenous microorganisms in the Antarctic: assessing the risks. Trends Microbiol 19:540–548

    Article  PubMed  CAS  Google Scholar 

  • Del Frate G, Caretta G (1990) Fungi isolates from Antarctic material. Polar Biol 11:1–7

    Article  Google Scholar 

  • Duarte AWF, Dayo-Owoyemi I, Nobre FS, Pagnocca FC, Chaud LCS, Pessoa A, Felipe MGA, Sette LD (2013) Taxonomic assessment and enzymes production by yeasts isolated from marine and terrestrial Antarctic samples. Extremophiles 17:1023–1035

    Article  PubMed  CAS  Google Scholar 

  • Duncan SM, Farrell RL, Thwaites JM, Held BW, Arenz BE, Jurgens JA, Blanchette RA (2006) Endoglucanase producing fungi isolated from Cape Evans historic expedition hut on Ross Ialsnd, Antarctica. Environ Microbiol 8:1212–1219

    Article  PubMed  CAS  Google Scholar 

  • Duncan SM, Minasaki R, Farrell RL, Thwaites JM, Held BW, Arenz BE, Jurgens JA, Blanchette RA (2008) Screening fungi isolated from historic Discovery Hut on Ross Island, Antarctica for cellulose degradation. Antarct Sci 20:463–470

    Article  Google Scholar 

  • Egidi E, De Hoog GS, Isola D, Onofri S, Quaedvlieg W, De Vries M, Verkley GJM, Stielow JB, Zucconi L, Selbmann L (2014) Phylogeny and taxonomy of meristematic rock-inhabiting black fungi in the dothideomycetes based on multi-locus phylogenies. Fungal Divers 65:127–165

    Article  Google Scholar 

  • Farrell RL, Arenz BE, Duncan SM, Held BW, Jurgens JA, Blanchette RA (2011) Introduced and indigenous fungi of the Ross Island historic huts and pristine areas of Antarctica. Polar Biol 34:1669–1677

    Article  Google Scholar 

  • Fenice M, Selbmann L, Zucconi L, Onofri S (1997) Production of extracellular enzymes by Antarctic fungal strains. Polar Biol 17:275–280

    Article  Google Scholar 

  • Ferrari BC, Zhang CD, Dorst J (2011) Recovering greater fungal diversity from pristine and diesel fuel contaminated sub-Antarctic soil through cultivation using both a high and a low nutrient media approach. Front Microbiol 2:1–14

    Article  Google Scholar 

  • Gamundi IJ, Spinedi HA (1988) Ascomycotina from Antarctica. New species and interesting collections from Danco Coast, Antarctic Peninsula. Mycotaxon 33:467–482

    Google Scholar 

  • German DP, Weintraub MN, Grandy AS, Lauber CL, Rinkes ZL, Allison SD (2011) Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biol Biochem 43:1387–1397

    Article  CAS  Google Scholar 

  • Gesheva V, Vasileva-Tonkova E (2012) Production of enzymes and antimicrobial compounds by halophilic Antarctic Nocardioides sp. grown on different carbon sources. World J Microb Biot 28:2069–2076

    Article  CAS  Google Scholar 

  • Greenfield LG (1992) Precepitation nitrogen at Maritime Signy Island and Continental Cape-Bird, Antarctica. Polar Biol 11:649–653

    Article  Google Scholar 

  • Guminska B, Heinrich Z, Olech M (1994) Macromycetes of the South Shetland Islands (Antarctica). Pol Polar Res 15:103–109

    Google Scholar 

  • Jongmans AG, Van Breemen N, Lundstrom U, Van Hees PAW, Finlay RD, Srinivasan M, Unestam T, Giesler R, Melkerud PA, Olsson M (1997) Rock-eating fungi. Nature 389:682–683

    Article  CAS  Google Scholar 

  • Kappen L (1993) Lichens in the Antarctic region. Antarctic microbiology. Wiley, New York, pp 433–490

    Google Scholar 

  • Kasieczka-Burnecka M, Kuc K, Kalinowska H, Knap M, Turkiewicz M (2007) Purification and characterization of two cold-adapted extracellular tannin acyl hydrolases from an Antarctic strain Verticillium sp. P9. Appl Microbiol Biotechnol 77:77–89

    Article  PubMed  CAS  Google Scholar 

  • Kerry E (1990) Microorganisms colonizing plants and soil subject to different degrees of human activity, including petroleum contamination in the Vestfold Hills and MacRobertson Land, Antarctica. Polar Biol 10:423–430

    Google Scholar 

  • Krishnan A, Alias SA, Michael Wong CVL, Pang KL, Convey P (2011) Extracellular hydrolase enzyme production by soil fungi from King George Island, Antarctica. Polar Biol 4:1535–1542

    Article  Google Scholar 

  • Loperena L, Soria V, Varela H, Lupo S, Bergalli A, Guigou M, Pellegrino A, Bernardo A, Calviño A, Rivas F, Batista S (2012) Extracellular enzymes produced by microorganisms isolated from maritime Antarctica. World J Microbiol Biotechnol 28:2249–2256

    Article  PubMed  CAS  Google Scholar 

  • Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346–361

    Article  PubMed  Google Scholar 

  • Margesin R, Gander S, Zacke G, Gounot AM, Schinner F (2003) Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts. Extremophiles 7:451–458

    Article  PubMed  CAS  Google Scholar 

  • Margesin R, Neuner G, Storey KB (2007) Cold-loving microbes, plants, and animals—fundamental and applied aspects. Naturwissenschaften 94:77–99

    Article  PubMed  CAS  Google Scholar 

  • Marshall WA (1998) Aerial transport of keratinaceous substrate and distribution of the fungus Geomyces pannorum in Antarctic soils. Microbial Ecol 36:212–219

    Article  Google Scholar 

  • Mercantini R, Marsella R, Moretto D, Finotti E (1993) Keratinophilic fungi in the Antarctic environment. Mycopathologia 169:169–175

    Article  Google Scholar 

  • Moller C, Dreyfuss MM (1996) Microfungi from Antarctic lichens, mosses and vascular plants. Mycologia 88:922–933

    Article  Google Scholar 

  • Montemartini Corte A (1991) Funghi di ambienti acquatici. In: Proceedings of the 1st meeting on ‘Biology in Antarctica’ (English summaries). Rome: Scienza e Cultura, Edizioni Universitarie Patavine, pp 67–76

  • Montemartini Corte A, Caretta G, Del Frate G (1993) Notes on Thelebolus microsporus isolated in Antarctica. Mycotaxon 48:343–358

    Google Scholar 

  • Newsham KK (2010) The biology and ecology of the liverwort Cephaloziella varians in Antarctica. Antarct Sci 22:131–143

    Article  Google Scholar 

  • Newsham KK, Bridge PD (2010) Sebacinales are associates of the leafy liverwort Lophozia excisa in the southern maritime Antarctica. Mycorrhiza 20:307–313

    Article  PubMed  CAS  Google Scholar 

  • Nichols DS, Sanderson K, Buia A, Kamp JV, Holloway P, Bowman JP, Smith M, Nichols CM, Nichols PD, McMeekin DA (2002) Bioprospecting and biotechnology in Antarctica. In: Jabour-Green J, Haward M (eds) The Antarctic: past, present and future, Antarctic CRC research report 28. Hobart, pp 85–103

  • O’Brien A, Sharp R, Russel NJ, Roller S (2004) Antarctic bacteria inhibit growth of food-borne microorganisms at low temperatures. FEMS Microbiol Ecol 48:157–167

    Article  PubMed  CAS  Google Scholar 

  • Miller Jr. OK (2002) Basidiomycetes in Arctic tundra in North America. In: Abstract in seventh international mycological congress proceedings, p 18

  • Onofri S, Tosi S (1992) Arthrobotrys ferox sp. nov. a springtail-capturing hyphomycete from continental Antarctica. Mycotaxon 44:445–451

    Google Scholar 

  • Onofri S, Rambelli A, Maggi O, Persiani AM, Riess S, Tosi S, Grasselli E (1991) Micologia del Suolo. In: Battaglia B, Bisol PM, Varotto V (eds) Proceedings of the 1st meeting on Biology in Antarctica (English summaries), Rome CNR, 22–23 June 1989. Scienza e Cultura. Edizioni Universitarie Patavine, Padua, pp 55–65

  • Onofri S, Pagano S, Zucconi L, Tosi L (1999) Friedmanniomyces endolithicus (Fungi, Hyphomycetes), anam.-gen. and sp. nov., from continental Antarctica. Nova Hedwigia 68:175–181

    Google Scholar 

  • Onofri S, Fenice M, Cicalini AR, Tosi S, Magrino A, Pagano S, Selbmann L, Zucconi L, Vishniac HS, Ocampo-Friedmann R, Friedmann EI (2000) Ecology and biology of microfungi from Antarctic rocks and soils. Ital J Zool 67:163–167

    Article  Google Scholar 

  • Onofri S, Zucconi L, Tosi S (2007a) Continental Antarctic fungi. ECHING bei Munchen: IHW-Verlag, ISBN: 978-3-930167-67-8, pp 1–247

  • Onofri S, Selbmann L, de Hoog GS, Grube M, Barreca D, Ruisi S, Zucconi L (2007b) Evolution and adaptation of fungi at the boundaries of life. Adv Space Res 40:1657–1664

    Article  Google Scholar 

  • Peck LS, Convey P, Barnes DKA (2006) Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biol Rev 81:75–109

    Article  PubMed  Google Scholar 

  • Pegler DN, Spooner BM, Smith RIL (1980) Higher fungi of Antarctica, the subantarctic zone and Falkland Islands. Kew Bull 35:499–562

    Article  Google Scholar 

  • Pickard J, Seppelt RD (1984) Phytogeography of Antarctica. J Biogeogr 11:83–102

    Article  Google Scholar 

  • Quanfu W, Yanhua H, Yu D, Peisheng Y (2012) Purification and biochemical characterization of a cold-active lipase from Antarctic sea ice bacteria Pseudoalteromonas sp. NJ 70. Mol Biol Rep 39:9233–9238

    Article  CAS  Google Scholar 

  • Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems: a journey towards relevance? New Phytol 157:475–492

    Article  Google Scholar 

  • Ruisi S, Barreca D, Selbmann L, Zucconi L, Onofri S (2007) Fungi in Antarctica. Rev Environ Sci Biotechnol 5:127–141

    Article  Google Scholar 

  • Selbmann L, de Hoog GS, Mazzaglia A, Friedmann EI, Onofri S (2005) Fungi at the edge of life: cryptoendolithic black fungi from Antarctic deserts. Stud Mycol 51:1–32

    Google Scholar 

  • Selbmann L, Isola D, Zucconi L, Onofri S (2011) Resistance to UV-B induced DNA damage in extreme-tolerant cryptoendolithic Antarctic fungi: detection by PCR assays. Fungal Biol 115:937–944

    Article  PubMed  CAS  Google Scholar 

  • Selbmann L, Isola D, Fenice M, Zucconi L, Sterflinger K, Onofri S (2012) Potential extinction of Antarctic endemic fungal species as a consequence of global warming. Sci Total Environ 438:127–134

    Article  PubMed  CAS  Google Scholar 

  • Selbmann L, Grube M, Onofri S, Isola D, Zucconi L (2013) Antarctic epilithic lichens as niches for black meristematic fungi. Biology 2:784–797

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh PN, Singh SK, Sharma PK (2013) Pigment, fatty acid and extracellular enzyme analysis of a fungal strain Thelebolus microsporus from Larsemann Hills, Antarctica. Polar Rec 50:31–36

    Article  Google Scholar 

  • Smith RIL (1984) Terrestrial plant biology of the Sub-Antarctic and Antarctic. Antarctic Ecology. Academic Press, London, pp 61–162

    Google Scholar 

  • Smith RIL (1994) Species-diversity and resource relationships of South Georgian fungi. Antarct Sci 6:45–52

    Google Scholar 

  • Strauss SL, Garcia-Pichel F, Day TA (2012) Soil microbial carbon and nitrogen transformations at a glacial foreland on Anvers Island, Antarctic Peninsula. Polar Biol 35:1459–1471

    Article  Google Scholar 

  • Tatur A, Myrcha A, Niegodzisz J (1997) Formation of abandoned penguin rookery ecosystems in the Maritime Antarctic. Polar Biol 17:405–417

    Article  Google Scholar 

  • Thomas AR, Hill EC (1976) Aspergillus fumigatus and supersonic aviation. I. Growth of A. fumigatus. Int Biodeterior 12:87–94

    Google Scholar 

  • Tortella GR, Rubilar O, Gianfreda L, Valenzuela E, Diez MC (2008) Enzymatic characterization of Chilean native wood-rotting fungi for potential use in the bioremediation of polluted environments with chlorophenols. World J Microbiol Biotechnol 24:2805–2818

    Article  CAS  Google Scholar 

  • Tosi S, Casado B, Gerdol R, Caretta G (2002) Fungi isolated from Antarctic mosses. Polar Biol 25:262–268

    Google Scholar 

  • Tosi S, Onofri S, Brusoni M, Zucconi L, Vishniac H (2005) Response of the Antarctic soil fungal assemblages to the experimental warming and reduction of UV radiation. Polar Biol 28:470–482

    Article  Google Scholar 

  • Upson R, Read DJ, Newsham KK (2007) Widespread association between the ericoid mycorrhizal fungus Rhizoscyphus ericae and a leafy liverwort in the maritime and sub-Antarctic. New Phytol 176:460–471

    Article  PubMed  CAS  Google Scholar 

  • Upson R, Newsham KK, Read DJ (2008) Root-fungal associations of Colobanthus quitensis and Deschampsia antarctica in the maritime and sub-Antarctic. Arct Antarct Alp Res 40:592–599

    Article  Google Scholar 

  • Vega K, Villena GK, Sarmiento VH, Ludeña Y, Vera N, Gutiérrez-Correa M (2012) Production of alkaline cellulase by fungi isolated from an undisturbed rain forest of Peru. Biotechnol Res Int. doi:10.1155/2012/934325

    PubMed  PubMed Central  Google Scholar 

  • Vishniac HS, Onofri S (2002) Cryptococcus antarcticus var. circumpolaris var. nov., a basidiomycetous yeast from Antarctica. Antonie Van Leeuwenhoek 83:233–235

    Google Scholar 

  • Warcup JH (1950) The soil plate method for isolation of fungi from soil. Nature 166:117–118

    Article  PubMed  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and application. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Williams PG, Roser DJ, Seppelt RD (1994) Mycorrhizas of hepatics in continental Antarctica. Mycol Res 98:34–36

    Article  Google Scholar 

  • Wong CMVL, Tam HK, Alias SA, Gonzalez M, Gonzalez-Rocha G, Dominguez-Yevenes M (2011) Pseudomonas and Pedobacter isolates from King George Island (Antarctica) inhibited the growth of foodborne pathogens. Pol Polar Res 32:3–14

    Google Scholar 

  • Yergeau E, Kang S, He Z, Zhou J, Kowalchuck GA (2007) Functional microarray analysis of nitrogen and carbon cycling genes across and Antarctic latitudinal transect. ISME J 1:163–179

    Article  PubMed  CAS  Google Scholar 

  • Zucconi L, Pagano S, Fenice M, Selbmann L, Tosi S, Onofri S (1996) Growth temperature preferences of fungal strains from Victoria Land, Antarctica. Polar Biol 16:53–61

    Article  Google Scholar 

  • Zucconi L, Ripa C, Selbmann L, Onofri S (2002) Effects of UV on the spores of the fungal species Arthrobotrys oligospora and A. ferox. Polar Biol 25:500–505

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Malaysian Antarctic Research Program and the University of Malaya for support and the provision of research facilities, and the Academy of Sciences Malaysia, Sultan Mizan Antarctica Research Award, Postgraduate Research Fund PG041-2013A, UMRG RG007-2012C and the Instituto Antarctico Chileno for logistics and support of the fieldwork. PC is supported by NERC core funding to the BAS core ‘Ecosystems’ programme and also by a Visiting Professorship to the University of Malaya. We thank anonymous reviewers for helpful comments and Peter Fretwell, British Antarctic Survey for providing South Shetland Islands map. This paper also contributes to the SCAR ‘Antarctic Thresholds—Ecosystem Resilience and Adaptation’ research programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siti Aisyah Alias.

Additional information

This article is an invited contribution on Life in Antarctica: Boundaries and Gradients in a Changing Environment as the main theme of the XIth SCAR Biology Symposium. J. -M. Gili and R. Zapata Guardiola (Guest Editors).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnan, A., Convey, P., Gonzalez-Rocha, G. et al. Production of extracellular hydrolase enzymes by fungi from King George Island. Polar Biol 39, 65–76 (2016). https://doi.org/10.1007/s00300-014-1606-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-014-1606-7

Keywords

Navigation