Skip to main content

Advertisement

Log in

Phytoplankton community composition and photosynthetic physiology in the Australian sector of the Southern Ocean during the austral summer of 2010/2011

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Phytoplankton population dynamics play an important role in biogeochemical cycles in the Southern Ocean during austral summer. However, the relationship between phytoplankton community composition and primary productivity remains elusive in this region. We investigated the community composition and photosynthetic physiology of surface phytoplankton assemblages in the Australian sector of the Southern Ocean from December 2010 to January 2011. There were significant latitudinal variations in hydrographic and biological parameters along 110°E and 140°E. Surface (5 m) chlorophyll a (chl a) concentrations measured with high-performance liquid chromatography varied between 0.18 and 0.99 mg m−3. The diatom contribution to the surface chl a biomass increased in the south, as estimated with algal chemotaxonomic pigment markers, while the contributions of haptophytes and chlorophytes decreased. In our photosynthesis–irradiance (PE) curve experiment, the maximum photosynthetic rate normalized to chl a (\(P_{ \hbox{max} }^{*}\)), initial slope (α *), the maximum quantum yield of carbon fixation (Φ c max), and the photoinhibition index (β *) were higher in the region where diatoms contributed >50 % to the chl a biomass. In addition, there were statistically significant correlations between the diatom contribution to the chl a biomass and the PE parameters. These results suggested that the changes in the phytoplankton community composition, primarily in diatoms, could strongly affect photosynthetic physiology in the Australian sector of the Southern Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alderkamp A-C, de Baar HJW, Visser RJW, Arrigo KR (2010) Can photoinhibition control phytoplankton abundance in deeply mixed water columns of the Southern Ocean? Limnol Oceanogr 55:248–1264

    Google Scholar 

  • Arrigo KR, Robinson DH, Worthen DL, Dunbar RB, DiTullio GR, van Woert M, Lizotte MP (1999) Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean. Science 283:365–367

    Article  PubMed  CAS  Google Scholar 

  • Behrenfeld MJ, Prasil O, Babin M, Bruyant F (2004) In search of physiological basis for covariations in light-limited and light-saturated photosynthesis. J Phycol 40:4–25

    Article  CAS  Google Scholar 

  • Bowie AR, Sedwick PN, Worsfold PJ (2004) Analytical intercomparison between flow injection–chemiluminescence and flow injection–spectrophotometry for the determination of picomolar concentrations of iron in seawater. Limnol Oceanogr Methods 2:42–54

    Article  Google Scholar 

  • Boyd PW, Abraham ER (2001) Iron-mediated changes in phytoplankton photosynthetic competence during SOIREE. Deep Sea Res II 48:2529–2550

    Article  CAS  Google Scholar 

  • Boyd PW, Watson AJ, Law CS, Abraham ER, Trull T, Murdoch R, Bakker DCE, Bowie AR, Buesseler KO, Chang H, Charette M, Croot P, Downing K, Frew R, Gall M, Hadfield M, Hall J, Harvey M, Jameson G, LaRoche J, Liddicoat M, Ling R, Maldonado MT, McKay RM, Nodder S, Pickmere S, Pridmore R, Rintoul S, Safi K, Sutton P, Strzepek R, Tanneberger K, Turner S, Waite A, Zeldis J (2000) A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407:695–702

    Article  PubMed  CAS  Google Scholar 

  • Bracher AU, Kroon BMA, Lucas MI (1999) Primary production, physiological state and composition of phytoplankton in the Atlantic Sector of the Southern Ocean. Mar Ecol Prog Ser 190:1–16

    Article  Google Scholar 

  • Claustre H, Moline MA, Prézelin BB (1997) Sources of variability in the column photosynthetic cross section for Antarctic coastal waters. J Geophys Res 102. doi:10.1029/96JC02439

  • Cleveland JS, Weidemann AD (1993) Quantifying absorption by aquatic particles: a multiple scattering correction for glass-fiber filters. Limnol Oceanogr 38:1321–1327

    Article  CAS  Google Scholar 

  • Coale KH, Johnson KS, Chavez FP, Buesseler KO, Barber RT, Brzezinski MA, Cochlan WP, Millero FJ, Falkowski PG, Bauer JE, Wanninkhof RH, Kudela RM, Altabet MA, Hales BE, Takahashi T, Landry MR, Bidigare RR, Wang X, Chase Z, Strutton PG, Friederich GE, Gorbunov MY, Lance VP, Hilting AK, Hiscock MR, Demarest M, Hiscock WT, Sullivan KF, Tanner SJ, Gordon RM, Hunter CN, Elrod VA, Fitzwater SE, Jones JL, Tozzi S, Koblizek M, Roberts AE, Herndon J, Brewster J, Ladizinsky N, Smith G, Cooper D, Timothy D, Brown SL, Selph KE, Sheridan CC, Twining BS, Johnson ZI (2004) Southern Ocean iron enrichment experiment: carbon cycling in high- and low-Si waters. Science 304:408–414

    Article  PubMed  CAS  Google Scholar 

  • Cota CF, Smith WO, Mitchell BG (1994) Photosynthesis of Phaeocystis in the Greenland Sea. Limnol Oceanogr 39:948–953

    Article  CAS  Google Scholar 

  • Davison IR (1991) Environmental effects on algal photosynthesis: temperature. J Phycol 27:2–8

    Article  Google Scholar 

  • de Baar HJW, de Jong JTM, Bakker DCE, Löscher BM, Veth C, Bathmann U, Smetacek V (1995) Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean. Nature 373:412–415

    Article  Google Scholar 

  • de Boyer Montégut C, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res 109. doi:10.1029/2004JC002378

  • de Salas MF, Eriksen R, Davidson AT, Wright SW (2011) Protistan communities in the Australian sector of the sub-Antarctic Zone during SAZ-SENSE. Deep Sea Res II 58:2135–2149

    Article  Google Scholar 

  • DOE (1994) In: Dickson AG, Goyet C (eds) Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water, version 2. Carbon Dioxide Information Analysis Center, Report ORNL/CDIAC-74, OakRidge National Laboratory, OakRidge, Tennessee

  • Dong S, Sprintall J, Gille ST, Talley L (2008) Southern Ocean mixed-layer depth from Argo float profiles. J Geophys Res 113. doi:10.1029/2006JC004051

  • Falkowski PG, Greene RM, Geider RJ (1992) Physiological limitation on phytoplankton productivity in the ocean. Oceanography 5:84–91

    Article  Google Scholar 

  • Falkowski PG, Green R, Kolber Z (1994) Light utilization and photoinhibition of photosynthesis in marine phytoplankton. In: Baker NR, Bowyer JR (eds) Photoinhibition of photosynthesis: from molecular mechanisms to the field. Bios Scientific, Milton Park

    Google Scholar 

  • Fouilland E, Descolas-Gros C, Courties C, Pons V (1999) Autotrophic carbon assimilation and biomass from size-fractionated phytoplankton in the surface waters across the subtropical frontal zone (Indian Ocean). Polar Biol 21:90–96

    Article  Google Scholar 

  • Gervais F, Riebesell U, Gorbunov MY (2002) Changes in primary productivity and chlorophyll a in response to iron fertilization in the Southern Polar Frontal Zone. Limnol Oceanogr 47:1324–1335

    Article  CAS  Google Scholar 

  • Goffart A, Catalano G, Hecq JH (2000) Factors controlling the distribution of diatoms and Phaeocystis in the Ross Sea. J Mar Syst 27:161–175

    Article  Google Scholar 

  • Gorbunov MY, Kolber ZS, Falkowski PG (1999) Measuring photosynthetic parameters in individual algal cells by Fast Repetition Rate fluorometry. Photosynth Res 62:141–153

    Article  CAS  Google Scholar 

  • Greene RM, Geider RJ, Kolber Z, Falkowski PG (1992) Iron-induced changes in light harvesting and photochemical energy conversion processes in eukaryotic marine algae. Plant Physiol 100:565–575

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hama T, Miyazaki T, Ogawa Y, Iwakuma T, Takahashi M, Otsuki A, Ichimura S (1983) Measurement of photosynthetic production of a marine phytoplankton population using a stable 13C isotope. Mar Biol 73:31–36

    Article  CAS  Google Scholar 

  • Hirawake T, Satoh H, Ishimaru T, Yamaguchi Y (2000) Photosynthetic characteristics of phytoplankton off Adéieland, Antarctica, during the austral summer. Polar Biosci 13:28–42

    Google Scholar 

  • Hiscok MR, Lance VP, Apprill AM, Bidigare RR, Johnson ZI, Mitchell BG, Smith WO, Barber R (2008) Photosynthetic maximum quantum yield increases are an essential component of the Southern Ocean phytoplankton response to iron. Proc Natl Acad Sci USA 105:4775–4780

    Article  Google Scholar 

  • Isada T, Kuwata A, Saito H, Ono T, Ishii M, Yoshikawa-Inoue H, Suzuki K (2009) Photosynthetic features and primary productivity of phytoplankton in the Oyashio and Kuroshio-Oyashio transition regions of the northwest Pacific. J Plankton Res 31:1009–1025

    Article  CAS  Google Scholar 

  • Kishino M, Takahashi M, Okami N, Ichimura S (1985) Estimation of the spectral absorption coefficients of phytoplankton in the sea. Bull Mar Sci 37:634–642

    Google Scholar 

  • Kolber Z, Zehr J, Falkowski P (1988) Effects of growth irradiance and nitrogen limitation on photosynthetic energy conversion in photosystem II. Plant Physiol 88:923–929

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kolber ZS, Barber RT, Coale KH, Fitzwater SE, Greene RM, Johnson KS, Lindiey S, Falkowski PG (1994) Iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature 371:145–149

    Article  CAS  Google Scholar 

  • Korb RE, Whitehouse MJ, Thorpe SE, Gordon M (2005) Primary production across the Scotia Sea in relation to the physico-chemical environment. J Mar Syst 57:231–249

    Article  Google Scholar 

  • Lance VP, Hiscock MR, Hilting AK, Stuebe DA, Bidigare RR, Smith WO, Barber RT (2007) Primary productivity, differential size fraction and pigment composition responses in two Southern Ocean in situ iron enrichments. Deep Sea Res 54:747–773

    Article  CAS  Google Scholar 

  • Lannuzel D, Schoemann V, de Jong J, Tison JL, Chou L (2007) Distribution and biogeochemical behaviour of iron in the East Antarctic sea ice. Mar Chem 106:18–32

    Article  CAS  Google Scholar 

  • Latasa M (2007) Improving estimations of phytoplankton class abundances using CHEMTAX. Mar Ecol Prog Ser 329:13–21

    Article  Google Scholar 

  • MacIntyre HL, Geider RJ (1996) Regulation of Rubisco activity and its potential effect on photosynthesis during mixing in a turbid estuary. Mar Ecol Prog Ser 144:247–264

    Article  CAS  Google Scholar 

  • Mackey MD, Mackey DJ, Higgins HW, Wright SW (1996) CHEMTAX-a program for estimating class abundances from chemical makers: application to HPLC measurements of phytoplankton. Mar Ecol Prog Ser 144:265–283

    Article  CAS  Google Scholar 

  • Marchant HJ, Davidson AT, Wright SW (1987) The distribution and abundance of chroococcoid cyanobacteria in the Southern Ocean. Proc NIPR Symp Polar Biol 1:1–9

    Google Scholar 

  • Martin JH, Gordon RM, Fitzwaters SE (1990) Iron in Antarctic waters. Nature 345:156–158

    Article  CAS  Google Scholar 

  • McNeil BI, Metzl N, Key RM, Matear RJ, Corbiere A (2007) An empirical estimate of the Southern Ocean air–sea CO2 flux. Glob Biogeochem Cycles 21:GB3011. doi:10.1029/2007GB002991

  • Mitchell BG, Holm-Hansen O (1991) Observations and modeling of the Antarctic phytoplankton crop in relation to mixing depth. Deep Sea Res 38:981–1007

    Article  CAS  Google Scholar 

  • Mitchell BG, Brody EA, Holm-Hansen O, McClain C, Bishop J (1991) Light limitation of phytoplankton biomass and macronutrient utilization in the Southern Ocean. Limnol Oceanogr 36:1662–1677

    Article  Google Scholar 

  • Moline MA, Schofield O, Boucher NP (1998) Photosynthetic parameters and empirical modeling of primary production: a case study on the Antarctic Peninsula shelf. Antarct Sci 10:45–54

    Google Scholar 

  • Moore CM, Seeyave S, Hickman AE, Allen JT, Lucas MI, Planquette H, Pollard RT, Poulton AJ (2007) Iron-light interactions during the CROZet natural iron bloom and export experiment (CROZEX) I: phytoplankton growth and photophysiology. Deep Sea Res II 54:2045–2065

    Article  CAS  Google Scholar 

  • Nelson DM, Smith WO (1991) Sverdrup revisited: critical depths, maximum chlorophyll levels, and the control of Southern Ocean productivity by the irradiance-mixing regime. Limnol Oceanogr 36:1650–1661

    Article  Google Scholar 

  • Nelson DM, Tréguer P (1992) Role of silicon as a limiting nutrient to Antarctic diatoms: evidence from kinetic studies in the Ross Sea ice-edge zone. Mar Ecol Prog Ser 80:255–264

    Article  Google Scholar 

  • Odate T, Fukuchi M (1995) Distribution and community structure of picophytoplankton in the Southern Ocean during the late austral summer of 1992. Proc NIPR Symp Polar Biol 8:86–100

    Google Scholar 

  • Orsi AH, Whitworth T III, Nowlin WD (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res 42:641–673

    Article  Google Scholar 

  • Platt T, Gallegos CL, Harrison WG (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38:687–701

    Google Scholar 

  • Sakshaug E, Bricaud A, Dandonneau Y, Falkowski PG, Kiefer DA, Legendre L, Morel A, Parslow J, Takahashi M (1997) Parameters of photosynthesis: definitions, theory and interpretation of results. J Plankton Res 19:1637–1670

    Article  CAS  Google Scholar 

  • Sarmiento JL, Gruber N, Brzezinski MA, Dunne JP (2004) High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427:56–60

    Article  PubMed  CAS  Google Scholar 

  • Sarthou G, Timmermans KR, Blain S, Tréguer P (2005) Growth physiology and fate of diatoms in the ocean: a review. J Sea Res 53:25–42

    Article  CAS  Google Scholar 

  • Schoemanna V, Becquevorta S, Stefelsb J, Rousseaua V, Lancelot C (2005) Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. J Sea Res 53:43–66

    Article  Google Scholar 

  • Scott FJ, Marchant HJ (2005) Antarctic marine protists. Australian Biological Resources Study and Australian Antarctic Division, p 572

  • Sedwick PN, Bowie AR, Trull T (2008) Dissolved iron in the Australian sector of the Southern Ocean (CLIVAR SR3 section): meridional and seasonal trends. Deep Sea Res 55:911–925

    Article  Google Scholar 

  • Seeyave S, Lucas MI, Moore CM, Poulton AJ (2007) Phytoplankton productivity and community structure in the vicinity of the Crozet Plateau during austral summer 2004/2005. Deep Sea Res II 54:2020–2044

    Article  Google Scholar 

  • Smith WO, Asper VL (2001) The influence of phytoplankton assemblage composition on biogeochemical characteristics and cycles in the southern Ross Sea, Antarctica. Deep Sea Res 48:137–161

    Article  CAS  Google Scholar 

  • Sohrin Y, Iwamoto S, Matsui M, Obata H, Nakayama E, Suzuki K, Handa N, Ishii M (2000) The distribution of Fe in the Australian sector of the Southern Ocean. Deep Sea Res 47:55–84

    Article  CAS  Google Scholar 

  • Strutton PG, Griffiths FB, Waters RL, Wright SW, Bindoff NL (2000) Primary productivity off the coast of the East Antarctica (80–150°E): January to March 1996. Deep Sea Res II 47:2327–2362

    Article  Google Scholar 

  • Suggett DJ, Moore CM, Hickman AE, Geider RJ (2009) Interpretation of fast repetition rate (FRR) fluorescence: signatures of phytoplankton community structure versus physiological state. Mar Ecol Prog Ser 376:1–19

    Article  Google Scholar 

  • Sukenik A, Bennett J, Falkowski P (1987) Light-saturated photosynthesis—limitation by electron transport or carbon fixation? BBA-Bioenerg 891:205–215

    Article  CAS  Google Scholar 

  • Suzuki K, Kishino M, Sasaoka K, Saitoh S-I, Saino T (1998) Chlorophyll-specific absorption coefficients and pigments of phytoplankton off Sanriku, Northwestern North Pacific. J Oceanogr 54:517–526

    Article  CAS  Google Scholar 

  • Suzuki K, Liu H, Saino T, Obata H, Takano M, Okamura K, Sohrin Y, Fujishima Y (2002) East–west gradients in the photosynthetic potential of phytoplankton and iron concentration in the subarctic Pacific Ocean during early summer. Limnol Oceanogr 47:1581–1594

    Article  CAS  Google Scholar 

  • Suzuki K, Hinuma A, Saito H, Kiyosawa H, Liu H, Saino T, Tsuda A (2005) Responses of phytoplankton and heterotrophic bacteria in the northwest subarctic Pacific to in situ iron fertilization as estimated by HPLC pigment analysis and flow cytometry. Prog Oceanogr 64:167–187

    Article  Google Scholar 

  • Suzuki K, Saito H, Isada T, Hattori-Saito A, Kiyosawa H, Nishioka J, Michael R, Mckay L, Kuwata A, Tsuda A (2009) Community structure and photosynthetic physiology of phytoplankton in the northwest subarctic Pacific during an in situ iron fertilization experiment (SEEDS-II). Deep Sea Res II 56:2733–2744

    Article  CAS  Google Scholar 

  • Takahashi T, Sutherland SC, Sweeney C, Poisson A, Metzl N, Tilbrook B, Bates N, Wanninkhof R, Feely RA, Sabine C, Olafsson J, Nojiri Y (2002) Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep Sea Res II 49:1601–1622

    Article  CAS  Google Scholar 

  • Takao S, Hirawake T, Wright SW, Suzuki K (2012) Variations of net primary productivity and phytoplankton community composition in the Indian sector of the Southern Ocean as estimated from ocean color remote sensing data. Biogeosciences 9:3875–3890

    Article  Google Scholar 

  • Tilzer MM, Elbrächter M, Gieskes WW, Beese B (1986) Light-temperature interactions in the control of photosynthesis in Antarctic phytoplankton. Polar Biol 5:105–111

    Article  Google Scholar 

  • Tomas CR (1997) Identifying marine phytoplankton. Academic Press, New York

    Google Scholar 

  • Uitz J, Claustre H, Griffiths FB, Ras J, Garcia N, Sandroni V (2009) A phytoplankton class-specific primary production model applied to the Kerguelen Islands region (Southern Ocean). Deep Sea Res 56:541–560

    Article  CAS  Google Scholar 

  • Vaillancourt RD, Sambrotto RN, Green S, Matsuda A (2003) Phytoplankton biomass and photosynthetic competency in the summertime Mertz Glacier Region of East Antarctica. Deep Sea Res II 50:1415–1440

    Article  CAS  Google Scholar 

  • Van Heukelem L, Thomas CS (2001) Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. J Chromatogr A 910:31–49

    Article  PubMed  Google Scholar 

  • Van Hilst CM, Smith WO (2002) Photosynthesis/irradiance relationships in the Ross Sea, Antarctica, and their control by phytoplankton assemblage composition and environmental factors. Mar Ecol Prog Ser 226:1–12

    Article  Google Scholar 

  • Venables H, Moore CM (2010) Phytoplankton and light limitation in the Southern Ocean: learning from high-nutrient, high-chlorophyll areas. J Geophys Res 115. doi:10.1029/2009JC005361

  • Welschmeyer NA (1994) Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol Oceanogr 39:1985–1992

    Article  CAS  Google Scholar 

  • Westwood KJ, Griffiths FB, Meiners KM, Williams GD (2010) Primary productivity off the Antarctic coast from 30°–80°E; BROKE-West survey, 2006. Deep Sea Res II 57:794–814

    Article  CAS  Google Scholar 

  • Wright SW, van den Enden RL (2000) Phytoplankton community structure and stocks in the East Antarctic marginal ice zone (BROKE survey, January–March 1996) determined by CHEMTAX analysis of HPLC pigment signatures. Deep Sea Res II 47:2363–2400

    Article  Google Scholar 

  • Wright SW, Thomas DP, Marchant HJ, Higgins HW, Mackey MD, Mackey DJ (1996) Analysis of phytoplankton of the Australian sector of the Southern Ocean: comparisons of microscopy and size frequency data with interpretations of pigment HPLC data using the ‘CHEMTAX’ matrix factorisation program. Mar Ecol Prog Ser 144:285–298

    Article  CAS  Google Scholar 

  • Wright SW, van den Enden RL, Pearce I, Davidson AT, Scott FJ, Westwood KJ (2010) Phytoplankton community structure and stocks in the Southern Ocean (30°–80°E) determined by CHEMTAX analysis of HPLC pigment signatures. Deep Sea Res II 57:758–778

    Article  CAS  Google Scholar 

  • Yoshie N, Suzuki K, Kuwata A, Nishioka J, Saito H (2010) Temporal and spatial variations in photosynthetic physiology of diatoms during the spring bloom in the western subarctic Pacific. Mar Ecol Prog Ser 399:39–52

    Article  CAS  Google Scholar 

  • Yoshikawa T, Meguro M, Takeda S, Furuya K (2007) Spatial heterogeneity in photosynthesis–irradiance parameters of phytoplankton across a cyclonic eddy in the Antarctic Divergence zone along 140°E. Geophys Res Lett 34. doi:10.1029/2007GL030736

  • Zapata M, Jeffrey SW, Wright SW, Rodríguez F, Garrido JL, Clementson L (2004) Photosynthetic pigments in 37 species (65 strains) of Haptophyta: implications for oceanography and chemotaxonomy. Mar Ecol Prog Ser 270:83–102

    Article  CAS  Google Scholar 

  • Zubkov MV, Sleigh MA, Tarran GA, Burkill PH, Leakey RJG (1998) Picoplanktonic community structure on an Atlantic transect from 50°N to 50°S. Deep Sea Res 45:1339–1355

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the captain and crew of the TR/V Umitaka-Maru, Dr. M. Moteki (Tokyo University of Marine Science and Technology), and many other colleagues on board for their assistance in collecting samples during cruises. We thank Dr. T. Odate (National Institute of Polar Research) for giving a chance to join the JARE RAMEEC (Responses of Antarctic Marine Ecosystems to global Environmental Changes with Carbonate systems) project. We also thank the Distributed Active Archive Center (DAAC) at the Goddard Space Flight Center (GSFC) for the production and distribution of satellite data. We appreciate the editor, Dr. A.-C. Alderkamp, and two anonymous reviewers for providing valuable comments that improved the manuscript significantly. This work was supported in part by the Japan Society for the Promotion of Science (JSPS), the JARE RAMEEC project, and the JAXA GCOM-C RA4 (JX-PSPC-381949).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shintaro Takao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takao, S., Hirawake, T., Hashida, G. et al. Phytoplankton community composition and photosynthetic physiology in the Australian sector of the Southern Ocean during the austral summer of 2010/2011. Polar Biol 37, 1563–1578 (2014). https://doi.org/10.1007/s00300-014-1542-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-014-1542-6

Keywords

Navigation