Skip to main content

Advertisement

Log in

Fine-scale spatial genetic structure in the brooding sea urchin Abatus cordatus suggests vulnerability of the Southern Ocean marine invertebrates facing global change

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The Southern Ocean benthic communities are characterized by their levels of endemism and their diversity of invertebrate brooding species. Overall, biological processes acting within these species remain poorly understood despite their importance to understand impacts of ongoing global change. We take part in filling this gap by studying the genetic structure over different spatial scales (from centimeters to tens of kilometers) in Abatus cordatus, an endemic and brooding sea urchin from the Kerguelen Islands. We developed three microsatellites and two exon-primed intron crossing markers and conducted a two-scale sampling scheme (from individuals to patches) within two dense localities of Abatus cordatus. Between patches, all pairwise comparisons, covering distances from few meters (between patches within locality) to 25 km (between localities), revealed significant genetic differentiation, a higher proportion of the molecular variance being explained by the comparisons between localities than within localities, in agreement with an isolation by distance model. Within patches, we found no significant correlation between individual pairwise spatial and genetic distances, except for the most polymorphic locus in the patch where the largest range of geographical distances had been analyzed. This study provides an estimation of the dispersal capacities of Abatus cordatus and highlights its low recolonization ability. Similar low recolonization capacities are thus expected in other Antarctic and Subantarctic brooding invertebrate species and suggest a high vulnerability of these species facing global change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Addison J, Hart M (2005) Spawning, copulation and inbreeding coefficients in marine invertebrates. Biol Bull 1:450–453

    CAS  Google Scholar 

  • Agustí S, Sejr MK, Duarte CM (2010) Impacts of climate warming on polar marine and freshwater ecosystems. Polar Biol 33:1595–1598

    Article  Google Scholar 

  • Arnaud JF, Madec L, Guiller A, Bellido A (2001) Spatial analysis of allozyme and microsatellite DNA polymorphisms in the land snail Helix aspersa (Gastropoda: Helicidae). Mol Ecol 10:1563–1576

    Article  PubMed  CAS  Google Scholar 

  • Arndt A, Smith MJ (1998) Genetic diversity and population structure in two species of sea cucumber: differing patterns according to mode of development. Mol Ecol 7:1053–1064

    Article  Google Scholar 

  • Aronson RB, Thatje S, Clarke A, Peck LS, Blake DB, Wilga CD, Seibel BA (2008) Climate change and invasibility of the Antarctic benthos. Annu Rev Ecol Evol Syst 38:129–154

    Article  Google Scholar 

  • Aurelle D, Cattaneo-Berrebi G, Berrebi P (2002) Natural and artificial secondary contact in brown trout (Salmo trutta, L.) in the French Western Pyrenees assessed by allozymes and microsatellites. Heredity 89:171–183

    Article  PubMed  CAS  Google Scholar 

  • Belkhir K, Castric V, Bonhomme F (2002) IDENTIX, a software to test for relatedness in a population using permutation methods. Mol Ecol Notes 2:611–614

    Article  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, populations, interactions, CNRS UMR 5000. Université de Montpellier II, Montpellier, France

    Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B-Stat Methodol 57:289–300

    Google Scholar 

  • Berrebi P, Boissin E, Fang F, Cattaneo-Berrebi G (2005) Intron polymorphism (EPIC-PCR) reveals phylogeographic structure of Zacco platypus in China: a possible target for aquaculture development. Heredity 94:589–598

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya CG (1967) A simple method of resolution of a distribution into Gaussian components. Biometrics 23:115–135

    Article  PubMed  CAS  Google Scholar 

  • Bierne N, Lehnert SA, Bédier E, Bonhomme F, Moore SS (2000) Screening for intron-length polymorphisms in penaeid shrimps using exon-primed intron-crossing (EPIC)-PCR. Mol Ecol 9:233–235

    Article  PubMed  CAS  Google Scholar 

  • Boissin E, Hoareau TB, Feral JP, Chenuil A (2008) Extreme selfing rates in the cosmopolitan brittle star species complex Amphipholis squamata: data from progeny-array and heterozygote deficiency. Mar Ecol Prog Ser 361:151–159

    Article  CAS  Google Scholar 

  • Born C, Hardy OJ, Chevallier MH, Ossari S, Attéké C, Wickings EJ, Hossaert-McKey M (2008) Small-scale spatial genetic structure in the Central African rainforest tree species Aucoumea klaineana: a stepwise approach to infer the impact of limited gene dispersal, population history and habitat fragmentation. Mol Ecol 17:2041–2050

    Article  PubMed  Google Scholar 

  • Bradbury IR, Bentzen P (2007) Non-linear isolation by distance: implications for dispersal estimation in anadromous and marine fish populations. Mar Ecol Prog Ser 340:245–257

    Article  Google Scholar 

  • Broquet T, Petit EJ (2009) Molecular estimation of dispersal for ecology and population genetics. Annu Rev Ecol Evol Syst 40:193–216

    Article  Google Scholar 

  • Calderón I, Palacin C, Turon X (2009) Microsatellite markers reveal shallow genetic differentiation between cohorts of the common sea urchin Paracentrotus lividus (Lamarck) in northwest Mediterranean. Mol Ecol 18:3036–3049

    Article  PubMed  CAS  Google Scholar 

  • Carlon DB, Lippé C (2007) Eleven new microsatellite markers for the tropical sea urchin Tripneustes gratilla and cross-amplification in Tripneustes ventricosa. Mol Ecol Notes 7:1002–1004

    Article  CAS  Google Scholar 

  • Castric V, Belkhir K, Bernatchez L, Bonhomme F (2002) Heterozygote deficiencies in small lacustrine populations of brook charr Salvelinus fontinalis Mitchill (Pisces, Salmonidae): a test of alternative hypotheses. Heredity 89:27–35

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty R, Andrade MD, Daiger SP, Budowle B (1992) Apparent heterozygote deficiencies observed in DNA typing data and their implications in forensic applications. Ann Hum Genet 56:45–57

    Article  PubMed  CAS  Google Scholar 

  • Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631

    Article  PubMed  CAS  Google Scholar 

  • Chapuis MP, Lecoq M, Michalakis Y, Loiseau A, Sword GA, Piry S, Estoup A (2008) Do outbreaks affect genetic population structure? A worldwide survey in Locusta migratoria, a pest plagued by microsatellite null alleles. Mol Ecol 17:3640–3653

    Article  PubMed  Google Scholar 

  • Chenuil A (2006) Choosing the right molecular genetic markers for studying biodiversity: from molecular evolution to practical aspects. Genetica 127:101–120

    Article  PubMed  CAS  Google Scholar 

  • Chenuil A, Le Gac M, Thierry M (2003) Fast isolation of microsatellite loci of very diverse repeat motifs by library enrichment in echinoderm species, Amphipholis squamata and Echinocardium cordatum. Mol Ecol Notes 3:324–327

    Article  CAS  Google Scholar 

  • Chenuil A, Gault A, Feral JP (2004) Paternity analysis in the Antarctic brooding sea urchin Abatus nimrodi: a pilot study. Polar Biol 27:177–182

    Article  Google Scholar 

  • Chenuil A, Hoareau TB, Egea E, Penant G, Rocher C, Aurelle D, Mokhtar-Jamai K, Bishop JDD, Boissin E, Diaz A, Krakau M, Luttikhuizen PC, Patti FP, Blavet N, Mousset S (2010) An efficient method to find potentially universal population genetic markers, applied to metazoans. BMC Evol Biol 10:276

    Article  PubMed  CAS  Google Scholar 

  • Cornuet JM, Piry S, Luikart G, Estoup A, Solignac M (1999) New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics 153:1989–2000

    PubMed  CAS  Google Scholar 

  • Costello MJ, Coll M, Danovaro R, Halpin P, Ojaveer H, Miloslavich P (2010) A census of marine biodiversity knowledge, resources, and future challenges. PLoS One 5:e12110

    Article  PubMed  CAS  Google Scholar 

  • David P, Perdieu M, Pernot A, Jarne P (1997) Fine-grained spatial and temporal population genetic structure in the marine bivalve Spisula ovalis. Evolution 51:1318–1322

    Article  Google Scholar 

  • David P, Pujol B, Viard F, Castella V, Goudet J (2007) Reliable selfing rate estimates from imperfect population genetic data. Mol Ecol 16:2474–2487

    Article  PubMed  CAS  Google Scholar 

  • De Ridder C, David B, Larrain A (1993) Antarctic and subantarctic echinoids from ‘Marion Dufresne’ expeditions MD03, MD04, MD08 and from the ‘Polarstern’ expedition Epos III. Bull Mus Nat Hist Nat Paris 14:405–441

    Google Scholar 

  • Dell RK (1972) Antarctic benthos. Adv Mar Biol 10:1–216

    Article  Google Scholar 

  • Dempster A, Laird N, Rubin D (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B Stat Methodol 39:1–38

    Google Scholar 

  • Diaz A, Féral JP, David B, Saucède T, Poulin E (2011) Evolutionary pathways among shallow and deep sea echinoids of the genus Sterechinus in the Southern Ocean. Deep Sea Res Part II 58 SI:205–211

    Google Scholar 

  • Dupont L, Bernas D, Viard F (2007) Sex and genetic structure across age groups in populations of the European marine invasive mollusc, Crepidula fornicata L. (Gastropoda). Biol J Linnean Soc 90:365–374

    Article  Google Scholar 

  • Dupont L, Viard F, Dowell MJ, Wood C, Bishop JDD (2009) Fine- and regional-scale genetic structure of the exotic ascidian Styela clava (Tunicata) in southwest England, 50 years after its introduction. Mol Ecol 18:442–453

    Article  PubMed  CAS  Google Scholar 

  • Epperson B (1995) Fine-scale spatial structure: correlation for individual genotypes differ from those for local gene-frequencies. Evolution 49:1022–1026

    Article  Google Scholar 

  • Estoup A, Rousset F, Michalakis Y, Cornuet JM, Adriamanga M, Guyomard R (1998) Comparative analysis of microsatellite and allozyme markers: a case study investigating microgeographic differentiation in brown trout (Salmo trutta). Mol Ecol 7:339–353

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50

    CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: Dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  PubMed  CAS  Google Scholar 

  • Fenster CB, Vekemans X, Hardy OJ (2003) Quantifying gene flow from spatial genetic structure data in a metapopulation of Chamaecrista fasciculata (Leguminosae). Evolution 57:995–1007

    PubMed  Google Scholar 

  • Féral JP (2002) How useful are the genetic markers in attempts to understand and manage biodiversity? J Exp Mar Biol Ecol 268:121–145

    Article  Google Scholar 

  • Féral JP, Poulin E (1994) Growth, recruitment and age structure of Abatus cordatus, a brood protecting schizasterid. SCAR sixth biology symposium. Antarctic communities: species, structure and survival, Venice, 30 May–3 June 1994. Univ. Padova, Padova, p 91

    Google Scholar 

  • Féral JP, Poulin E (2011) Kerguelen Islands: a living laboratory to understand the benthic biodiversity of the Antarctic. In: Duhamel G, Welsford D (eds) The Kerguelen plateau, marine ecosystem and fisheries. Société Française d'Ichtyologie, Paris, pp 151–156

  • Féral JP, Villard AM, Barré N, Chenuil A (2003) What is the smallest distance of genetic differentiation in the brood protecting ophiuroid Amphipholis squamata from Western Mediterranean? In: Féral JP, David B (eds) Echinoderm research. Proceedings of 6th European conference on Echinoderm, Banyuls-sur-mer, France. Swets and Zeitlinger Publishers, Lisse, pp 23–27

    Google Scholar 

  • Gérard K, Bierne N, Borsa P, Chenuil A, Féral JP (2008) Pleistocene separation of mitochondrial lineages of Mytilus spp. mussels from Northern and Southern Hemispheres and strong genetic differentiation among southern populations. Mol Phylogenet Evol 49:84–91

    Article  PubMed  CAS  Google Scholar 

  • Gil DG, Zaixso HE, Tolosano JA (2009) Brooding of the sub-Antarctic heart urchin, Abatus cavernosus (Spatangoida: Schizasteridae), in Southern Patagonia. Mar Biol 156:1647–1657

    Article  Google Scholar 

  • González-Wevar CA, Nakano T, Cañete JI, Poulin E (2010) Molecular phylogeny and historical biogeography of Nacella (Patellogastropoda: Nacellidae) in the Southern Ocean. Mol Phylogenet Evol 56:115–124

    Article  PubMed  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from http://www.unil.ch/izea/softwares/fstat.html. Updated from Goudet (1995)

  • Griffiths HJ (2010) Antarctic marine biodiversity—what do we know about the distribution of life in the Southern Ocean? PLoS One 5:e11683

    Article  PubMed  CAS  Google Scholar 

  • Guo S, Thompson E (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48:361–372

    Article  PubMed  CAS  Google Scholar 

  • Gutt J, Sirenko BI, Smirnov IS, Arntz WE (2004) How many macrozoobenthic species might inhabit the Antarctic shelf? Antarct Sci 16:11–16

    Article  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  CAS  Google Scholar 

  • Held C, Leese F (2007) The utility of fast evolving molecular markers for studying speciation in the Antarctic benthos. Polar Biol 30:513–521

    Google Scholar 

  • Held C, Wägele JW (2005) Cryptic speciation in the giant Antarctic isopod Glyptonotus antarcticus (Isopoda: Valvifera: Chaetiliidae). Sci Mar 69:175–181

    Article  Google Scholar 

  • Hendry AP, Lohmann LG, Conti E, Cracraft J, Crandall KA, Faith DP, Hauser C, Joly CA, Kogure K, Larigauderie A, Magallon S, Moritz C, Tillier S, Zardoya R, Prieur-Richard AH, Walther BA, Yahara T, Donoghue MJ (2010) Evolutionary biology in biodiversity science, conservation and policy: a call to action. Evolution 64:1517–1528

    PubMed  Google Scholar 

  • Hoarau G, Boon E, Jongma DN, Ferber S, Palsson J, Van der Veer HW, Rijnsdorp AD, Stam WT, Olsen JL (2005) Low effective population size and evidence for inbreeding in an overexploited flatfish, plaice (Pleuronectes platessa L.). Proc R Soc B Biol Sci 272:497–503

    Article  Google Scholar 

  • Hoffman JI, Clarke A, Linse K, Peck LS (2011) Effects of brooding and broadcasting reproductive modes on the population genetic structure of two Antarctic gastropod molluscs. Mar Biol 158:287–296

    Article  Google Scholar 

  • Hunt A (1993) Effects of contrasting patterns of larval dispersal on the genetic connectedness of local populations of two intertidal starfish, Patiriella calcar and P. exigua. Mar Ecol Prog Ser 92:179–186

    Article  Google Scholar 

  • Jarman SN, Elliott NG, Nicol S, McMinn A (2002) Genetic differentiation in the Antarctic coastal krill Euphausia crystallorophias. Heredity 88:280–287

    Article  PubMed  CAS  Google Scholar 

  • Jarne P, Lagoda PJL (1996) Microsatellites, from molecules to populations and back. Trends Ecol Evol 11:424–429

    Article  PubMed  CAS  Google Scholar 

  • Kalinowski ST (2002) How many alleles per locus should be used to estimate genetic distances? Heredity 88:62–65

    Article  PubMed  CAS  Google Scholar 

  • Krug AZ, Jablonski D, Roy K (2010) Differential extinction and the contrasting structure of polar marine faunas. PLoS One 5:e15362

    Article  PubMed  CAS  Google Scholar 

  • Lavergne S, Mouquet N, Thuiller W, Ronce O (2010) Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annu Rev Ecol Evol Syst 41:321–350

    Article  Google Scholar 

  • Leblois R, Estoup A, Rousset F (2003) Influence of mutational and sampling factors on the estimation of demographic parameters in a “continuous” population under isolation by distance. Mol Biol Evol 20:491–502

    Article  PubMed  CAS  Google Scholar 

  • Ledoux JB, Mokthar-Jamaï K, Roby C, Féral JP, Garrabou J, Aurelle D (2010a) Genetic survey of shallow populations of the Mediterranean red coral [Corallium rubrum (Linnaeus, 1758)]: new insights into evolutionary processes shaping nuclear diversity and implications for conservation. Mol Ecol 19:675–690

    Article  PubMed  CAS  Google Scholar 

  • Ledoux JB, Garrabou J, Bianchimani O, Drap P, Féral JP, Aurelle D (2010b) Fine-scale genetic structure and inferences on population biology in the threatened Mediterranean red coral, Corallium rubrum. Mol Ecol 19:4204–4216

    Article  Google Scholar 

  • Lemer S, Rochel E, Planes S (2011) Correction method for null alleles in species with variable microsatellite flanking regions, a case study of the black-lipped pearl oyster Pinctada margaritifera. J Hered 102:243–246

    Article  PubMed  CAS  Google Scholar 

  • Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understory shrub, Sychotria officinalis (Rubiaceae). Am J Bot 82:1420–1425

    Article  Google Scholar 

  • McCartney MA, Brayer K, Levitan DR (2004) Polymorphic microsatellite loci from the red urchin, Strongylocentrotus franciscanus, with comments on heterozygote deficit. Mol Ecol Notes 4:226–228

    Article  CAS  Google Scholar 

  • Murray J (1885) Notes on the reproduction of certain echinoderms from the Southern Ocean. Rep Sci Res ‘Challenger’ Expedition (Her Majesty’s Stationery Office) 1:379–396

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  PubMed  CAS  Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Article  PubMed  CAS  Google Scholar 

  • Palumbi SR (2003) Population genetics, demographic connectivity, and the design of marine reserves. Ecol Appl 13:S146–S148

    Article  Google Scholar 

  • Poulin E (1996) Signification adaptative et conséquences évolutives de l’incubation chez un invertébré marin benthique subantarctique, Abatus cordatus (Verrill, 1876). PhD thesis, Université Montpellier II

  • Poulin E, Féral JP (1994) The fiction and the facts of antarctic incubation—population genetics and phylogeny of schizasterid echinoids. In: David B, Guille A, Féral JP, Roux M (eds) Echinoderms through time. Proceedings of the 8th international echinoderm conference, Dijon, France. Balkema, Rotterdam, pp 837–843

  • Poulin E, Féral JP (1995) Pattern of spatial distribution of a brood-protecting schizasterid echinoid, Abatus cordatus, endemic to the Kerguelen Islands. Mar Ecol Prog Ser 118:179–186

    Article  Google Scholar 

  • Poulin E, Féral JP (1996) Why are there so many species of brooding Antarctic echinoids? Evolution 50:820–830

    Article  Google Scholar 

  • Poulin E, von Boletzky S, Feral JP (2001) Combined ecological factors permit classification of developmental patterns in benthic marine invertebrates: a discussion note. J Exp Mar Biol Ecol 257:109–115

    Article  PubMed  Google Scholar 

  • Poulin E, Palma AT, Féral JP (2002) Evolutionary versus ecological success in Antarctic benthic invertebrates. Trends Ecol Evol 17:218–222

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Pritchard JK, Wen X, Falush D (2007) Documentation for the STRUCTURE software, Version 2. Chicago. Available at http://pritch.bds.uchicago.edu. Accessed March 2011

  • Pudovkin AI, Zaykin DV, Hedgecock D (1996) On the potential for estimating the effective number of breeders from heterozygote-excess in progeny. Genetics 144:383–387

    PubMed  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (ver. 1.2): a population genetics software for exact test and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Reusch TBH, Stam WT, Olsen JL (2000) A microsatellite-based estimation of clonal diversity and population subdivision in Zostera marina, a marine flowering plant. Mol Ecol 9:127–140

    Article  PubMed  CAS  Google Scholar 

  • Rogers AD (2007) Evolution and biodiversity of Antarctic organisms: a molecular perspective. Philos Trans R Soc B Biol Sci 362:2191–2214

    Article  CAS  Google Scholar 

  • Ronce O (2007) How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu Rev Ecol Evol Syst 38:231–253

    Article  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F statistics under isolation by distance. Genetics 145:1219–1228

    PubMed  CAS  Google Scholar 

  • Rousset F (2000) Genetic differentiation between individuals. J Evol Biol 13:58–62

    Article  Google Scholar 

  • Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Ryman N, Palm S, André C, Carvalho GR, Dahlgren TG, Jorde PE, Laikre L, Larsson LC, Palmé A, Ruzzante DE (2006) Power for detecting genetic divergence: differences between statistical methods and marker loci. Mol Ecol 15:2031–2045

    Article  PubMed  CAS  Google Scholar 

  • Schatt P, Feral JP (1991) The brooding cycle of Abatus cordatus (Echinodermata, Spatangoida) at Kerguelen Islands. Polar Biol 11:283–292

    Article  Google Scholar 

  • Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629

    Article  PubMed  Google Scholar 

  • Slattery M, Bosch I (1993) Mating-behavior of a brooding antarctic Asteroid, Neosmilaster georgianus. Invertebr Reprod Dev 24:97–102

    Article  Google Scholar 

  • Smetacek V, Nicol S (2005) Polar ocean ecosystems in a changing world. Nature 437:362–368

    Article  PubMed  CAS  Google Scholar 

  • Stevens MI, Hogg ID (2006) Contrasting levels of mitochondrial DNA variability between mites (Penthalodidae) and springtails (Hypogastruridae) from the Trans-Antarctic Mountains suggest long-term effects of glaciation and life history on substitution rates, and speciation processes. Soil Biol Biochem 38:3171–3180

    Article  CAS  Google Scholar 

  • Tarnowska K, Chenuil A, Nikula R, Féral JP, Wolowicz M (2010) Complex genetic population structure of the bivalve Cerastoderma glaucum in a highly fragmented lagoon habitat. Mar Ecol Prog Ser 406:173–184

    Article  Google Scholar 

  • Teixido N, Garrabou J, Arntz WE (2002) Spatial pattern quantification of Antarctic benthic communities using landscape indices. Mar Ecol Prog Ser 242:1–14

    Article  Google Scholar 

  • Teixido N, Garrabou J, Gutt J, Arntz WE (2007) Iceberg disturbance and successional spatial patterns: the case of the shelf Antarctic benthic communities. Ecosystems 10:142–157

    Article  Google Scholar 

  • Thatje S (2005) The future fate of the Antarctic marine biota? Trends Ecol Evol 20:418–419

    Article  PubMed  Google Scholar 

  • Thatje S, Hillenbrand CD, Larter R (2005) On the origin of Antarctic marine benthic community structure. Trends Ecol Evol 20:534–540

    Article  PubMed  Google Scholar 

  • Thomson CW (1878) Notice of some peculiarities on the mode of propagation of certain echinoderms of the southern seas. Zool J Linn Soc 13:55–79

    Google Scholar 

  • Thornhill DJ, Mahon AR, Norenburg JL, Halanych KM (2008) Open-ocean barriers to dispersal: a test case with the Antarctic Polar Front and the ribbon worm Parborlasia corrugatus (Nemertea: Lineidae). Mol Ecol 17:5104–5117

    Article  PubMed  CAS  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 6:255–256

    Article  Google Scholar 

  • Vaughan DG, Marshall GJ, Connolley WM, Parkinson C, Mulvaney R, Hodgson DA, King JC, Pudsey CJ, Turner J (2003) Recent rapid regional climate warming on the Antarctic Peninsula. Clim Change 60:243–274

    Article  Google Scholar 

  • Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13:921–935

    Article  PubMed  CAS  Google Scholar 

  • Verrill AE (1876) Contribution to the natural history of Kerguelen Island. Annelids and Echinoderms. Bull US Natl Mus 3:64–75

    Google Scholar 

  • Waples RS, Gaggiotti O (2006) What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol Ecol 15:1419–1439

    Article  PubMed  CAS  Google Scholar 

  • Waples RS, Punt AE, Cope JM (2008) Integrating genetic data into management of marine resources: how can we do it better? Fish Fish 9:423–429

    Google Scholar 

  • Watts PC, Rousset F, Saccheri IJ, Leblois R, Kemp SJ, Thompson DJ (2007) Compatible genetic and ecological estimates of dispersal rates in insect (Coenagrion mercuriale: Odonata: Zygoptera) populations: analysis of ‘neighbourhood size’ using a more precise estimator. Mol Ecol 16:737–751

    Article  PubMed  Google Scholar 

  • Weersing K, Toonen RJ (2009) Population genetics, larval dispersal, and connectivity in marine systems. Mar Ecol Prog Ser 393:1–12

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wilson NG, Hunter RL, Lockhart SJ, Halanych KM (2007) Multiple lineages and absence of panmixia in the “circumpolar” crinoid Promachocrinus kerguelensis from the Atlantic sector of Antarctica. Mar Biol 152:895–904

    Article  Google Scholar 

  • Wilson NG, Schrodl M, Halanych KM (2009) Ocean barriers and glaciation: Evidence for explosive radiation of mitochondrial lineages in the Antarctic sea slug Doris kerguelenensis (Mollusca, Nudibranchia). Mol Ecol 18:965–984

    Article  PubMed  Google Scholar 

  • Yasuda N, Nagai S, Hamaguchi M, Okaji K, Gérard K, Nadaoka K (2009) Gene flow of Acanthaster planci (L.) in relation to ocean currents revealed by microsatellite analysis. Mol Ecol 18:1574–1590

    Article  PubMed  Google Scholar 

  • Yund PO (2000) How severe is sperm limitation in natural populations of marine free-spawners? Trends Ecol Evol 15:10–13

    Article  PubMed  Google Scholar 

  • Zane L, Ostellari L, Maccatrozzo L, Bargelloni L, Battaglia B, Patarnello T (1998) Molecular evidence for genetic subdivision of Antarctic krill populations. Proc R Soc B-Biol Sci 265:2387–2391

    Article  CAS  Google Scholar 

  • Zulliger D, Ruch M, Tanner S, Ribi G (2008) Characterization of nine microsatellite loci in the sea star Astropecten aranciacus and cross-species amplification for related taxa. Mol Ecol Resour 8:634–636

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Development of EPIC markers, corresponding salaries, and genotyping was possible owing to two European networks of excellence, NoE MARBEF (GOCE-CT-2003-505446) and NoE Marine Genomics Europe (GOCE-CT-2004-505403) and a French ANR Antflock. Logistic and collection of Abatus cordatus were supported by the program Macrobenthos no 195 of the French Polar Institute (IPEV), and thanks to Thomas Abiven for help in samples collection and management in fieldwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-B. Ledoux.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 52 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ledoux, JB., Tarnowska, K., Gérard, K. et al. Fine-scale spatial genetic structure in the brooding sea urchin Abatus cordatus suggests vulnerability of the Southern Ocean marine invertebrates facing global change. Polar Biol 35, 611–623 (2012). https://doi.org/10.1007/s00300-011-1106-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-011-1106-y

Keywords

Navigation