Skip to main content
Log in

Primary production, light absorption and quantum yields of phytoplankton from the Bellingshausen and Amundsen Seas (Antarctica)

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Chlorophyll concentration, light intensity, primary production, light absorption and quantum yield were measured between 12 January 1994 and 27 March 1994 in the Bellingshausen and Amundsen Seas. Primary production and quantum yield within Bellingshausen and Amundsen Seas were typical of the high-nutrient, low-chlorophyll area of the Southern Ocean while small variations were found as a result of local conditions. Chlorophyll a (chl a) concentrations were generally low (<1 μg l−1) in the water column, while in cases of blooms it reached 7–8 μg l−1. The light intensity at which photosynthesis approaches saturation varied between 59 and 105 μmol q m−2 s−1 . The initial slope of the photosynthesis curve varied between 0.02 and 0.07 μg C (μg chl a)−1 h−1 (μmol q m−2 s−1)−1. The maximal photosynthetic rate at light saturation ranged between 1.6 and 5.4 μg C (μg chl a)−1 h−1. Light limitation was found within the mixing depth, while no photoinhibition was observed when surface light was 500 μmol q m−2 s−1. The mean spectral absorption coefficients of phytoplankton ranged between 0.018 and 0.042 m2 (mg chl a)−1 depending on the phytoplankton taxonomy. The quantum yield of photosynthesis varied between 0.027 and 0.076 mol C mol q−1. These high quantum yields are explained by the prevailing high nutrient concentrations in this area. Light intensity plays a major role as limiting factor, even in very shallow water. The phytoplankton close to the surface did not show photoinhibition but had higher UV absorption capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  • Abbott MR, Richman JG, Letelier RM, Bartlett JS (2000) The spring bloom in the Antarctic Polar Frontal Zone as observed from a mesoscale array of bio-optical sensors. Deep-Sea Res 47:3285–3314

    Google Scholar 

  • Almgren T, Dryssen D, Strandberg M (1974) Determination of pH on the moles per kg seawater scale (Mw). Deep-Sea Res 22:635–646

    Google Scholar 

  • Arrigo KR, McClain CR (1994) Spring phytoplankton production in the Western Ross Sea. Science 266:261–263

    Google Scholar 

  • Arrigo KR, Robinson DH, Sullivan CW (1993) A high-resolution study of the platelet ice ecosystem in McMurdo Sound, Antarctica—photosynthetic and biooptical characteristics of a dense microalgal bloom. Mar Ecol Prog Ser 98:173–185

    Google Scholar 

  • Arrigo KR, Worthen DL, Lizotte MP, Dixon P, Dieckmann G (1997) Primary production in Antarctic sea ice. Science 276:394–397

    Article  CAS  PubMed  Google Scholar 

  • Arrigo KR, Worthen D, Schnell A, Lizotte MP (1998) Primary production in Southern Ocean waters. J Geophys Res Ocean 103:15587–15600

    Google Scholar 

  • Babin M, Morel A, Claustre H, Bricaud A, Kolber Z, Falkowski PG (1996) Nitrogen- and irradiance-dependent variations of the maximum quantum yield of carbon fixation in eutrophic, mesotrophic and oligotrophic marine systems. Deep-Sea Res 43:1241–1272

    Google Scholar 

  • Berner T, Dubinsky Z, Wyman K, Falkowski PG (1989) Photoadaptation and the package effect in Dunaliella tertiolecta (Chlorophyceae). J Phycol 25:70–78

    CAS  Google Scholar 

  • Boyd PW, Robinson C, Savidge G, Williams PJL (1995) Water column and sea-ice primary production during Austral Spring in the Bellingshausen Sea. Deep-Sea Res 42:1177–1200

    Google Scholar 

  • Boyd PW, Watson AJ, Law CS, Abraham ER, Trull T, Murdoch R, Bakker DCE, Bowie AR, Buesseler KO, Chang H, Charette M, Croot P, Downing K, Frew R, Gall M, Hadfield M, Hall J, Harvey M, Jameson G, LaRoche J, Liddicoat M, Ling R, Maldonado MT, McKay RM, Nodder S, Pickmere S, Pridmore R, Rintoul S, Safi K, Sutton P, Strzepek R, Tanneberger K, Turner S, Waite A, Zeldis J (2000) A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407:695–702

    Article  CAS  PubMed  Google Scholar 

  • Bracher AU, Tilzer MM (2001) Underwater light field and phytoplankton absorbance in different surface water masses of the Atlantic sector of the Southern Ocean. Polar Biol 24:687–696

    Article  Google Scholar 

  • Bracher AU, Wiencke C (2000) Simulation of the effects of naturally enhanced UV radiation on photosynthesis of Antarctic phytoplankton. Mar Ecol Prog Ser 196:127–141

    CAS  Google Scholar 

  • Bracher AU, Kroon BMA, Lucas MI (1999) Primary production, physiological state and composition of phytoplankton in the Atlantic Sector of the Southern Ocean. Mar Ecol Prog Ser 190:1–16

    Google Scholar 

  • Bricaud A, Stramski D (1990) Spectral absorption-coefficients of living phytoplankton and nonalgal biogenous matter—a comparison between the Peru upwelling area and the Sargasso Sea. Limnol Oceanogr 35:562–582

    CAS  Google Scholar 

  • Brightman RI, Smith WO (1989) Photosynthesis-irradiance relationships of Antarctic phytoplankton during Austral Winter. Mar Ecol Prog Ser 53:143–151

    CAS  Google Scholar 

  • Brody E, Mitchell G, Holm-Hansen O, Vernet M (1992) Species depending variations of the absorption coefficient in the Gerlache Strait. Antarct J US 27:160–162

    Google Scholar 

  • Cota GF, Smith WO, Mitchell BG (1994) Photosynthesis of Phaeocystis in the Greenland Sea. Limnol Oceanogr 39:948–953

    Google Scholar 

  • Debaar HJW, Dejong JTM, Bakker DCE, Loscher BM, Veth C, Bathmann U, Smetacek V (1995) Importance of iron for plankton blooms and carbon-dioxide drawdown in the Southern-Ocean. Nature 373:412–415

    CAS  Google Scholar 

  • Dower KM, Lucas MI, Phillips R, Dieckmann G, Robinson DH (1996) Phytoplankton biomass, P-I relationships and primary production in the Weddell Sea, Antarctica, during the austral autumn. Polar Biol 16:41–52

    Google Scholar 

  • Dubinsky Z (1992) The functional and optical absorption cross-sections of phytoplankton photosynthesis. In: Falkowski PG, Woodhead AD (eds) Primary productivity and biogeochemical cycles in the sea. Plenum, New York, pp 31–45

  • El Sayed EZ (1970) On productivity of the Southern Ocean (Atlantic and Pacific sectors). In: Holdgate MW (ed) Antarctic ecology. Academic, New York, pp 119–135

  • El Sayed EZ, Taguchi S (1981) Primary production and standing crop of phytoplankton along the ice-edge in the Weddell sea. Deep-Sea Res 28:1017–1032

    Google Scholar 

  • El Sayed EZ, Biggs DC, Holm-Hansen O (1983) Phytoplankton standing crop, primary productivity, and near-surface nitrogenous nutrient fields in the Ross Sea. Deep-Sea Res 30:871–886

    Google Scholar 

  • Falkowski PG (1994) The role of phytoplankton photosynthesis in global biogeochemical cycles. Photosynth Res 39:235–258

    Google Scholar 

  • Falkowski PG, Raven JA (1997) Aquatic photosynthesis. Blackwell, Massachusetts

  • Figueiras FG, Estrada M, Lopez O, Arbones B (1998) Photosynthetic parameters and primary production in the Bransfield Strait: relationships with mesoscale hydrographic structures. J Mar Syst 17:129–141

    Article  Google Scholar 

  • Figueiras FG, Arbones B, Estrada M (1999) Implications of bio-optical modeling of phytoplankton photosynthesis in Antarctic waters: further evidence of no light limitation in the Bransfield Strait. Limnol Oceanogr 44:1599–1608

    Google Scholar 

  • Fisher T, Shurtz-Swirski R, Gepstein S, Dubinsky Z (1989) Changes in the levels of ribulose-1,5- biphosphate carboxylase/oxygenase in Tetraedron minimum (Chlorophyta) during light and shade adaptation. Plant Cell Physiol 30:221–228

    CAS  Google Scholar 

  • Gall MP, Strzepek R, Maldonado M, Boyd PW (2001) Phytoplankton processes. Part 2. Rates of primary production and factors controlling algal growth during the Southern Ocean Iron RElease Experiment (SOIREE). Deep-Sea Res 48:2571–2590

    Google Scholar 

  • Garcia MA, Castro CG, Rios AF, Doval MD, Roson G, Gomis D, Lopez O (2002) Water masses and distribution of physico-chemical properties in the Western Bransfield Strait and Gerlache Strait during Austral summer 1995/96. Deep-Sea Res II 49:585–602

    Google Scholar 

  • Helbling EW, Villafane V, Ferrario M, Holmhansen O (1992) Impact of natural ultraviolet-radiation on rates of photosynthesis and on specific marine-phytoplankton species. Mar Ecol Prog Ser 80:89–100

    Google Scholar 

  • Herzig R, Falkowski PG (1989) Nitrogen limitation in Isochrysis galbana (Haptophyceae). I. Photosynthetic energy conversion and growth efficiencies. J Phycol 25:462–471

    CAS  Google Scholar 

  • Holm-Hansen O, Helbling EW, Lubin D (1993) Ultraviolet-radiation in Antarctica—inhibition of primary production. Photochem Photobiol 58:567–570

    CAS  Google Scholar 

  • Holm-Hansen O, Amos AF, Silva N, Villafane V, Helbling EW (1994) In situ evidence for a nutrient limitation of phytoplankton growth in pelagic Antarctic waters. Antarct Sci 6:315–324

    Google Scholar 

  • Jacques G (1983) Some ecophysiological aspects of the Antarctic phytoplankton. Polar Biol 2:27–33

    Google Scholar 

  • Kiefer DA, Soohoo JB (1982) Spectral absorption by marine particles of coastal waters of Baja California. Limnol Oceanogr 27:492–499

    Google Scholar 

  • Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, London

  • Kishino M, Takahashi M, Okami N, Ichimura S (1985) Estimation of the spectral absorption coefficients of phytoplankton in the sea. Bull Mar Sci 37:634–642

    Google Scholar 

  • Knox GA (1994) The Biology of the Southern Ocean. Cambridge University Press, London

  • Lewis MR, Smith JC (1983) A small volume, short-incubation-time method for measurement of photosynthesis as a function of incident irradiance. Mar Ecol Prog Ser 13:99–102

    CAS  Google Scholar 

  • Lorenzo LM, Arbones B, Figueiras FG, Tilstone GH, Figueroa FL (2002) Photosynthesis, primary production and phytoplankton growth rates in Gerlache and Bransfield Straits during Austral summer: cruise FRUELA 95. Deep-Sea Res II 49:707–721

    Google Scholar 

  • Mitchell BG, Holm-Hansen O (1991) Observations and modeling of the Antarctic phytoplankton crop in relation to mixing depth. Deep-Sea Res I 38:981–1007

    Google Scholar 

  • Mitchell BG, Kiefer DA (1988) Chlorophyll-α specific absorption and fluorescence excitation-spectra for light-limited phytoplankton. Deep-Sea Res 35:639–663

    Google Scholar 

  • Mitchell BG, Brody EA, Holm-Hansen O, McClain C, Bishop J (1991) Light limitation of phytoplankton biomass and macronutrient utilization in the Southern Ocean. Limnol Oceanogr 36:1662–1677

    Google Scholar 

  • Morel A, Bricaud A (1981) Theoretical results concerning light-absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep-Sea Res I 28:1375–1393

    Google Scholar 

  • Pedros-Alio C, Vaque D, Guixa-Boixereu N, Gasol JM (2002) Prokaryotic plankton biomass and heterotrophic production in western Antarctic waters during the 1995–1996 Austral summer. Deep-Sea Res II 49:805–825

    Google Scholar 

  • Platt T, Gallegos CL, Harrison WG (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38:686–701

    Google Scholar 

  • Pollard RT, Read JF, Allen JT, Griffiths G, Morrison AI (1995) On the physical structure of a front in the Bellingshausen Sea. Deep-Sea Res 42:955–982

    Google Scholar 

  • Prezelin BB, Boucher NP, Smith RC (1994) Marine primary production under the influence of the Antarctic ozone hole: ICECOLORS '90. In: Weiler CS, Penhale PA (eds) Ultraviolet radiation in Antarctica: measurements and biological effects. Antarctic research series, vol 62. American Geophysical Union, Washington, pp 159–186

  • Priddle J, Hawes I, Ellis-Evans JC, Smith RC (1986) Antarctic aquatic ecosystems as habitats for phytoplankton. Biol Rev 61:199–238

    Google Scholar 

  • Riegger L, Robinson D (1997) Photoinduction of UV-absorbing compounds in Antarctic diatoms and Phaeocystis antarctica. Mar Ecol Prog Ser 160:13–25

    Google Scholar 

  • Roesler CS, Perry MJ, Carder KL (1989) Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters. Limnol Oceanogr 34:1510–1523

    CAS  Google Scholar 

  • Sakshaug E, Holm-Hansen O (1986) Photoadaptation in Antarctic phytoplankton: variations in growth rate, chemical composition and P versus I curves. J Plankton Res 8:459–473

    Google Scholar 

  • Sakshaug E, Slagstad D (1991) Light and productivity of phytoplankton in polar marine ecosystems—a physiological view. Polar Res 10:69–85

    Google Scholar 

  • Sakshaug E, Slagstad D, Holm-Hansen O (1991) Factors controlling the development of phytoplankton blooms in the Antarctic Ocean—a mathematical-model. Mar Chem 35:259–271

    CAS  Google Scholar 

  • Savidge G, Harbour D, Gilpin LC, Boyd PW (1995) Phytoplankton distributions and production in the Bellingshausen Sea, Austral spring 1992. Deep-Sea Res 42:1201–1224

  • Schanz F, Senn P, Dubinsky Z (1997) Light absorption by phytoplankton and the vertical light attenuation: ecological and physiological significance. Oceanogr Mar Biol 35:71–95

    Google Scholar 

  • Silva N, Helbling EW, Villafane V, Amos AF, Holm-Hansen O (1995) Variability in nutrient concentrations around Elephant Island, Antarctica, during 1991–1993. Polar Res 14:69–82

    Google Scholar 

  • Smith RC, Prezelin BB, Baker KS, Bidigare RR, Boucher NP, Coley T, Karentz D, Macintyre S, Matlick HA, Menzies D, Ondrusek M, Wan Z, Waters KJ (1992) Ozone depletion—ultraviolet radiation and phytoplankton biology in Antarctic waters. Science 255:952–959

    CAS  PubMed  Google Scholar 

  • Smith WO, Marra J, Hiscock MR, Barber RT (2000) The seasonal cycle of phytoplankton biomass and primary productivity in the Ross Sea, Antarctica. Deep-Sea Res II 47:3119–3140

    Google Scholar 

  • Stambler N, Reynolds R, Bracher A, Hoge U, Tilzer MM (1996) Biooptic. In: Miller H, Grobe H (eds) The Expedition Antarktis-XI/3 of the RV "Polarstern" in 1994. Reports on Polar Research, vol 188. Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany, pp 58–64

  • Stambler N, Lovengreen C, Tilzer MM (1997) The underwater light field in the Bellingshausen and Amundsen seas (Antarctica). Hydrobiologia 344:41–56

    Article  CAS  Google Scholar 

  • Strass VH, Garabato ACN, Bracher AU, Pollard RT, Lucas MI (2002) A 3-D mesoscale map of primary production at the Antarctic Polar Front: results of a diagnostic model. Deep-Sea Res II 49:3813–3834

    Google Scholar 

  • Tilzer MM, Dubinsky Z (1987) Effects of temperature and day length on the mass balance of Antarctic phytoplankton. Polar Biol 7:35–42

    Google Scholar 

  • Tilzer MM, Bodungen B, Smetacek V von (1985) Light-dependence of phytoplankton photosynthesis in the Antarctic ocean: implications for regulating productivity. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer, Berlin Heidelberg New York, pp 60–69

  • Tilzer MM, Elbrachter M, Gieskes WW, Beese B (1986) Light-temperature interactions in the control of photosynthesis in Antarctic phytoplankton. Polar Biol 5:111

    Google Scholar 

  • Tilzer MM, Gieskes WW, Heusel R, Fenton N (1994) The impact of phytoplankton on spectral water transparency in the Southern Ocean—implications for primary productivity. Polar Biol 14:127–136

    Google Scholar 

  • Waldron HN, Attwood CG, Probyn TA, Lucas MI (1995) Nitrogen dynamics in the Bellingshausen Sea during the Austral Spring of 1992. Deep-Sea Res 42:1253–1276

    Google Scholar 

  • Weiler CS, Penhale PA (1994) Ultraviolet radiation in Antarctica: measurements and biological effects. Antarctic Research Series, vol 62. American Geophysical Union, Washington

    Google Scholar 

  • Zimmerman RC, Soohoo JB, Kremer JN, D'Argenio DZ (1987) Evaluation of variance approximation techniques for non-linear photo-irradiance models. Mar Biol 95:209–215

    Google Scholar 

Download references

Acknowledgements

I wish to thank Prof. Max M. Tilzer. Without his support this work would never have been done. I thank Dr. A.U. Bracher, Dr. R.A. Reynolds, J. Brunßen, U. Hoge, Dr. D.H. Robinson, the Polarstern crew and the reviewers. This research was supported by the Alfred Wegener Institute for Polar and Marine Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noga Stambler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stambler, N. Primary production, light absorption and quantum yields of phytoplankton from the Bellingshausen and Amundsen Seas (Antarctica). Polar Biol 26, 438–451 (2003). https://doi.org/10.1007/s00300-003-0508-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-003-0508-x

Keywords

Navigation