Skip to main content
Log in

Changes in transcript expression patterns as a result of cryoprotectant treatment and liquid nitrogen exposure in Arabidopsis shoot tips

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Transcripts related to abiotic stress, oxidation, and wounding were differentially expressed in Arabidopsis shoot tips in response to cryoprotectant and liquid nitrogen treatment.

Abstract

Cryopreservation methods have been implemented in genebanks as a strategy to back-up plant genetic resource collections that are vegetatively propagated. Cryopreservation is frequently performed using vitrification methods, whereby shoot tips are treated with cryoprotectant solutions, such as Plant Vitrification Solution 2 (PVS2) or Plant Vitrification Solution 3 (PVS3); these solutions remove and/or replace freezable water within the meristem cells. We used the model system Arabidopsis thaliana to identify suites of transcripts that are up- or downregulated in response to PVS2 and PVS3 treatment and liquid nitrogen (LN) exposure. Our results suggest that there are many changes in transcript expression in shoot tips as a result of cryoprotection and that these changes exceed the number detected as a result of LN exposure. In total, 180 transcripts showed significant changes in expression level unique to treatment with either the cryoprotectant or cryopreservation followed by recovery. Of these 180 transcripts, 67 were related to stress, defense, wounding, lipid, carbohydrate, abscisic acid, oxidation, temperature (cold/heat), or osmoregulation. The responses of five transcripts were confirmed using qPCR methods. The transcripts responding to PVS2 + LN suggest an oxidative response to this treatment, whereas the PVS3 + LN treatment invoked a more general metabolic response. This work shows that the choice of cryoprotectant can have a major influence on the patterns of transcript expression, presumably due to the level and extent of stress experienced by the shoot tip. As a result, there may be divergent responses of study systems to PVS2 and PVS3 treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arce DP, Godoy AV, Tsuda K, K-i Yamazaki, Valle EM, Iglesias MJ, Di Mauro MF, Casalongué CA (2010) The analysis of an Arabidopsis triple knock-down mutant reveals functions for MBF1 genes under oxidative stress conditions. J Plant Physiol 167:194–200

    Article  CAS  PubMed  Google Scholar 

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  CAS  PubMed  Google Scholar 

  • Carpentier SC, Vertommen A, Swennen R, Witters E, Fortes C, Souza MT, Panis B (2010) Sugar-mediated acclimation: the importance of sucrose metabolism in meristems. J Proteome Res 9:5038–5046

    Article  CAS  PubMed  Google Scholar 

  • Chen G-Q, Ren L, Zhang J, Reed BM, Zhang D, Shen X-H (2015) Cryopreservation affects ROS-induced oxidative stress and antioxidant response in Arabidopsis seedlings. Cryobiology 70:38–47

    Article  CAS  PubMed  Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible W-R (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folgado R, Panis B, Sergeant K, Renaut J, Swennen R, Hausman J-F (2015) Unravelling the effect of sucrose and cold pretreatment on cryopreservation of potato through sugar analysis and proteomics. Cryobiology 71:432–441

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Nishikawa H, Badejo A, Shibata H, Sawa Y, Nakagawa T, Maruta T, Shigeoka S, Smirnoff N, Ishikawa T (2011) Expression of aspartyl protease and C3HC4-type RING zinc finger genes are responsive to ascorbic acid in Arabidopsis thaliana. J Exp Bot 62:3647–3657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths CA, Gaff DF, Neale AD (2014) Drying without senescence in resurrection plants. Front Plant Sci 5:1–18

    Article  Google Scholar 

  • Hammond JP, Bennett MJ, Bowen HC, Broadley MR, Eastwood DC, May ST, Rahn C, Swarup R, Woolaway KE, White PJ (2003) Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol 132:578–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helliot B, Swennen R, Pournay Y, Frison E, Lepoivre P, Panis B (2003) Ultrastructural changes associated with cryopreservation of banana (Musa spp.) highly proliferating meristems. Plant Cell Rep 21:690–698

    CAS  PubMed  Google Scholar 

  • Krivoruchko A, Storey KB (2010) Activation of antioxidant defenses in response to freezing in freeze-tolerant painted turtle hatchlings. Biochem Biophys Acta 1800:662–668

    Article  CAS  PubMed  Google Scholar 

  • Liu W-X, Zhang F-C, Zhang W-Z, Song L-F, Wu W-H, Chen Y-F (2013) Arabidopsis Di19 functions as a transcription factor and modulates PR1, PR2, and PR5 expression in response to drought stress. Mol Plant 6:1487–1502

    Article  CAS  PubMed  Google Scholar 

  • Lynch PT, Siddika A, Johnston JW, Trigwell SM, Mehra A, Benelli C, Lambardi M, Benson EE (2011) Effects of osmotic pretreatments on oxidative stress, antioxidant profiles and cryopreservation of olive somatic embryos. Plant Sci 181:47–56

    Article  CAS  PubMed  Google Scholar 

  • Maia J, Dekkers BJW, Provart NJ, Ligterink W, Hilhorst HWM (2011) The re-establishment of desiccation tolerance in germinated Arabidopsis thaliana seeds and its associated transcriptome. PLoS One 6:e29123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nishizawa S, Sakai A, Amano Y, Matsuzawa T (1993) Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic suspension cells and subsequent plant regeneration by vitrification. Plant Sci 91:67–73

    Article  CAS  Google Scholar 

  • Odani M, Komatsu Y, Oka S, Iwahashi H (2003) Screening of genes that respond to cryopreservation stress using yeast DNA microarray. Cryobiology 47:155–164

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, ISBN 3-900051-07-0. http://www.R-project.org/

  • Ren L, Zhang D, Jiang X-N, Gai Y, Wang W-M, Reed BM (2013) Peroxidation due to cryoprotectant treatment is a vital factor for cell survival in Arabidopsis cryopreservation. Plant Sci 212:37–47

    Article  CAS  PubMed  Google Scholar 

  • Ren L, Zhang D, G-q Chen, Reed BM, X-h Shen, H-y Chen (2015) Transcriptomic profiling revealed the regulatory mechanism of Arabidopsis seedlings response to oxidative stress from cryopreservation. Plant Cell Rep 34:2161–2178

    Article  CAS  PubMed  Google Scholar 

  • Sakai A (2000) Development of cryopreservation techniques. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm, Current research progress and application. Japan International Research Center for Agricultural Sciences/International Plant Genetic Resources Institute, Tsukuba/Rome, pp 1–7

    Google Scholar 

  • Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep 9:30–33

    Article  CAS  PubMed  Google Scholar 

  • Seo PJ, Kim MJ, Park J-Y, Kim S-Y, Jeon J, Lee Y-H, Kim J, Park C-M (2010) Cold activation of a plasma membrane-tethered NAC transcription factor induces a pathogen resistance response in Arabidopsis. Plant J 61:661–671

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Wang X, Ye T, Chen F, Deng J, Yang P, Zhang Y, Chan Z (2014) The cysteine2/histidine2-type transcription factor ZINC FINGER OF ARABIDOPSIS THALIANA6 modulates biotic and abiotic stress responses by activating salicylic acid-related genes and C-REPEAT-BINDING FACTOR genes in Arabidopsis. Plant Physiol 165:1367–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spiess A-N, Ritz C (2012) qpcR: modeling and analysis of real-tiime PCR data. R package version 1.3-6. http://CRAN.R-project.org/package=qpcR

  • Storey KB (2006) Reptile freeze tolerance: metabolism and gene expression. Cryobiology 52:1–16

    Article  CAS  PubMed  Google Scholar 

  • Towill L, Bonnart R, Volk G (2006) Cryopreservation of Arabidopsis thaliana shoot tips. CryoLetters 27:353–360

    CAS  PubMed  Google Scholar 

  • Uchendu EE, Muminova M, Gupta S, Reed BM (2010) Antioxidant and anti-stress compounds improve growth of cryopreserved Rubus shoot tips. In vitro Cell Dev Biol Plant 46:386–393

    Article  CAS  Google Scholar 

  • Volk GM, Caspersen AM (2007) Plasmolysis and recovery of different cell types in cryoprotected shoot tips of Metha × piperita. Protoplasma 231:215–226

    Article  PubMed  Google Scholar 

  • Volk GM, Walters C (2006) Plant vitrification solution 2 lowers water content and alters freezing behavior in shoot tips during cryoprotection. Cryobiology 52:48–61

    Article  CAS  PubMed  Google Scholar 

  • Volk GM, Harris JL, Rotindo KE (2006) Survival of mint shoot tips after exposure to cryoprotectant solution components. Cryobiology 52:305–308

    Article  CAS  PubMed  Google Scholar 

  • Volk GM, Henk A, Basu C (2011) Gene expression in response to cryoprotectant and liquid nitrogen exposure in Arabidopsis shoot tips. Acta Hort 908:55–66

    Article  CAS  Google Scholar 

  • Wang B, Li JW, Zhang ZB, Wang RR, Ma YL, Blystad DR, Keller ERJ, Wang QC (2014) Three vitrification-based cryopreservation procedures cause different cryo-injuries to potato shoot tips while all maintain genetic integrity in regenerants. J Biotechnol 184:47–55

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Ren L, G-q Chen, Zhang J, Reed BM, X-h Shen (2015) ROS-induced oxidative stress and apoptosis-like event directly affect the cell viability of cryopreserved embryogenic callus in Agapanthus praecox. Plant Cell Rep 34:1499–1513

    Article  PubMed  Google Scholar 

  • Zhou X, Jiang Y, Yu D (2011) WRKY22 transcription factor mediates dark-induced leaf senescence in Arabidopsis. Mol Cells 31:303–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gayle M. Volk.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by L. Tripathi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Sup. Table 1 Primer sequences for transcripts assayed via qPCR and references for each primer or sequence source.

Sup. Table 2 Quantification, yield, and RIN for RNA extractions used in qPCR, along with PCR efficiency and r2 of calibration curve for qPCR, reported in accordance with MIQE guidelines for qPCR (Bustin et al. 2009).

Sup. Table 3 Probe and transcript information for array analysis. Transcripts marked as “unique to cryoprotection or cryopreservation” comprise the 180 transcripts that show significant, twofold changes in expression for PVS2 − LN vs. SUC − LN, PVS3 − LN vs. SUC − LN, PVS2 + LN vs. PVS2 − LN, and PVS3 + LN vs. PVS3 − LN while not showing significant, twofold change in expression for SUC vs. SUC − LN. Column headings: Sig Index, significant at an FDR cutoff of –log10(p value) ≥ 2.415 (1 = significant, 0 = not significant); Sig twofold Diff, transcript is significant and shows a twofold change in expression; Diff of Treatment, fold change of transcript expression on a log2 scale (1 = significant). Entries in bold were assayed via qPCR.

Supplementary material 1 (XLSX 8200 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gross, B.L., Henk, A.D., Bonnart, R. et al. Changes in transcript expression patterns as a result of cryoprotectant treatment and liquid nitrogen exposure in Arabidopsis shoot tips. Plant Cell Rep 36, 459–470 (2017). https://doi.org/10.1007/s00299-016-2095-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-016-2095-7

Keywords

Navigation