Skip to main content

Advertisement

Log in

Breeding approaches and genomics technologies to increase crop yield under low-temperature stress

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Improved knowledge about plant cold stress tolerance offered by modern omics technologies will greatly inform future crop improvement strategies that aim to breed cultivars yielding substantially high under low-temperature conditions.

Abstract

Alarmingly rising temperature extremities present a substantial impediment to the projected target of 70% more food production by 2050. Low-temperature (LT) stress severely constrains crop production worldwide, thereby demanding an urgent yet sustainable solution. Considerable research progress has been achieved on this front. Here, we review the crucial cellular and metabolic alterations in plants that follow LT stress along with the signal transduction and the regulatory network describing the plant cold tolerance. The significance of plant genetic resources to expand the genetic base of breeding programmes with regard to cold tolerance is highlighted. Also, the genetic architecture of cold tolerance trait as elucidated by conventional QTL mapping and genome-wide association mapping is described. Further, global expression profiling techniques including RNA-Seq along with diverse omics platforms are briefly discussed to better understand the underlying mechanism and prioritize the candidate gene (s) for downstream applications. These latest additions to breeders’ toolbox hold immense potential to support plant breeding schemes that seek development of LT-tolerant cultivars. High-yielding cultivars endowed with greater cold tolerance are urgently required to sustain the crop yield under conditions severely challenged by low-temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe N, Kotaka S, Toriyama K, Kobayashi M (1989) Development of the “Rice Norin PL 8” with high tolerance to cool temperature at the booting stage. Res Bull Hokkaido Natl Agric Exp Stn 152:9–17

    Google Scholar 

  • Agarwal M, Hao Y, Kapoor A, Dong CH, Fujii H, Zheng X, Zhu JK (2006) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem 281:37636–37645

    Article  CAS  PubMed  Google Scholar 

  • Allen DJ, Ort DR (2001) Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci 6:36–42

    Article  CAS  PubMed  Google Scholar 

  • Alm V, Busso CS, Ergon A, Rudi H, Larsen A, Humphreys MW, Rognli OA (2011) QTL analyses and comparative genetic mapping of frost tolerance, winter survival and drought tolerance in meadow fescue (Festuca pratensis Huds.). Theor Appl Genet 123:369–382

    Article  PubMed  Google Scholar 

  • Alonso-Blanco C, Gomez-Mena C, Llorente F, Koornneef M, Salinas J, Martínez-Zapater JM (2005) Genetic and molecular analyses of natural variation indicate CBF2 as a candidate gene for underlying a freezing tolerance quantitative trait locus in Arabidopsis. Plant Physiol 139:1304–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andaya VC, Mackill DJ (2003a) QTLs conferring cold tolerance at the booting stage of rice using recombinant inbred lines from a japonica/indica cross. Theor Appl Genet 106:1084–1090

    Article  CAS  PubMed  Google Scholar 

  • Andaya VC, Mackill DJ (2003b) Mapping of QTLs associated with cold tolerance during the vegetative stage in rice. J Exp Bot 54:2579–2585

    Article  CAS  PubMed  Google Scholar 

  • Andaya VC, Tai TH (2006) Fine mapping of the qCTS12 locus, a major QTL for seedling cold tolerance in rice. Theor Appl Genet 113:467–475

    Article  CAS  PubMed  Google Scholar 

  • Andaya VC, Tai TH (2007) Fine mapping of the qCTS4 locus associated with seedling cold tolerance in rice (Oryza sativa L.). Mol Breed 20:349–358

    Article  CAS  Google Scholar 

  • Arbaoui M, Link W, Satovic Z, Torres AM (2008) Quantitative trait loci of frost tolerance and physiologically related trait in faba bean (Vicia faba L.). Euphytica 164:93–104

    Article  CAS  Google Scholar 

  • Ariel F, Romero-Barrios N, Jégu T, Benhamed M, Crespi M (2015) Battles and hijacks: noncoding transcription in plants. Trends Plant Sci 20:362–371

    Article  CAS  PubMed  Google Scholar 

  • Arms EM, Bloom AJ, St Clair DA (2015) High-resolution mapping of a major effect QTL from wild tomato Solanum habrochaites that influences water relations under root chilling. Theor Appl Genet 128:1713–1724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Artus NN, Uemura M, Steponkus PL, Gilmour SJ, Lin CT, Thomashow MF (1996) Constitutive expression of the cold regulated Arabidopsis thaliana COR 15a gene affects both chloroplast and protoplast freezing tolerance. Proc Natl Acad Sci USA 93:13404–13409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asghari A, Mohammadi SA, Moghaddam M, Mohammaddust H (2007) Identification of QTLs controlling cold resistance-related traits in Brassica napus L. using RAPD markers. J Food Agric Environ 3&4:188–192

    Google Scholar 

  • Avia K, Pilet-Nayel ML, Bahrman N, Baranger A, Delbreil B, Fontaine V, Hamon C, Hanocq E, Niarquin M, Sellier H, Vuylsteker C, Prosperi JM, Lejeune-Hénaut I (2013) Genetic variability and QTL mapping of freezing tolerance and related traits in Medicago truncatula. Theor Appl Genet 126:2353–2366

    Article  CAS  PubMed  Google Scholar 

  • Badawi M, Reddy YV, Agharbaoui Z, Tominaga Y, Danyluk J, Sarhan F, Houde M (2008) Structure and functional analysis of wheat ICE (Inducer of CBF Expression) genes. Plant Cell Physiol 49:1237–1249

    Article  CAS  PubMed  Google Scholar 

  • Båga M, Chodaparambil SV, Limin AE, Pecar M, Fowler DB, Chibbar RN (2007) Identification of quantitative trait loci and associated candidate genes for low-temperature tolerance in cold-hardy winter wheat. Funct Integr Genom 7:53–68

    Article  CAS  Google Scholar 

  • Bai B, Wu J, Sheng WT, Zhou B, Zhou LJ, Zhuang W, Yao DP, Deng QY (2015) Comparative analysis of anther transcriptome profiles of two different rice male sterile lines genotypes under cold stress. Int J Mol Sci 16:11398–11416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barah P, Jayavelu ND, Rasmussen S, Nielsen HB, Mundy J, Bones AM (2013) Genome-scale cold stress response regulatory networks in ten Arabidopsis thaliana ecotypes. BMC Genom 14:722

    Article  CAS  Google Scholar 

  • Barakat A, Sriram A, Park J, Zhebentyayeva T, Main D, Abbott A (2012) Genome wide identification of chilling responsive microRNAs in Prunus persica. BMC Genom 13:481

    Article  CAS  Google Scholar 

  • Bevilacqua CB, Basu S, Pereira A, Tseng TM, Zimmer PD, Burgos NR (2015) Analysis of stress-responsive gene expression in cultivated and weedy rice differing in cold stress tolerance. PLoS One 10:e0132100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boer R, Campbell LC, Fletcher DJ (1993) Characteristics of frost in a major wheat-growing region of Australia. Aust J Agric Res 44:1731–1743

    Article  Google Scholar 

  • Bonnecarrère V, Quero G, Monteverde E, Rosas J, de Vida FP, Cruz M, Corredor E, Garaycochea S, Monza J (2014) Candidate gene markers associated with cold tolerance in vegetative stage of rice (Oryza sativa L.). Euphytica 203:385–398

    Article  CAS  Google Scholar 

  • Burow G, Burke JJ, Xin Z, Franks CD (2010) Genetic dissection of early-season cold tolerance in sorghum (Sorghum bicolor (L.) Moench). Mol Breed 28:391–402

    Article  Google Scholar 

  • Calzadilla PI, Maiale SJ, Ruiz OA, Escaray FJ (2016) Transcriptome response mediated by cold stress in Lotus japonicas. Front Plant Sci 7:374

    Article  PubMed  PubMed Central  Google Scholar 

  • Campoli C, Matus-Cádiz MA, Pozniak CJ, Cattivelli L, Fowler DB (2009) Comparative expression of Cbf genes in the Triticeae under different acclimation induction temperatures. Mol Genet Genom 282:141–152

    Article  CAS  Google Scholar 

  • Cao X, Wu Z, Jiang F, Zhou R, Yang Z (2014) Identification of chilling stress-responsive tomato microRNAs and their target genes by high-throughput sequencing and degradome analysis. BMC Genom 15:1130

    Article  CAS  Google Scholar 

  • Carvallo MA, Pino MT, Jeknic Z, Zou C, Doherty CJ, Shiu SH, Chen TH, Thomashow MF (2011) A comparison of the low temperature transcriptomes and CBF regulons of three plant species that differ in freezing tolerance: Solanum commersonii, Solanum tuberosum, and Arabidopsis thaliana. J Exp Bot 62:3807–3819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casao MC, Igartua E, Karsai I, Bhat PR, Cuadrado N, Gracia MP, Lasa JM, Casas AM (2011) Introgression of an intermediate VRNH1 allele in barley (Hordeum vulgare L.) leads to reduced vernalization requirement without affecting freezing tolerance. Mol Breed 28:475–484

    Article  CAS  Google Scholar 

  • Case AJ, Skinner DZ, Garland-Campbell KA, Carter AH (2013) freezing tolerance-associated quantitative trait loci in the Brundage × Coda wheat recombinant inbred line population. Crop Sci 54:982–992

    Article  Google Scholar 

  • Cattivelli L, Baldi P, Crosatti C, Di Fonzo N, Faccioli P, Grossi M, Mastrangelo AM, Pecchioni N, Stanca AM (2002) Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Mol Biol 48:649–665

    Article  CAS  Google Scholar 

  • Chan Z, Wang Y, Cao M, Gong Y, Mu Z, Wang H, Hu Y, Deng X, He XJ, Zhu JK (2016) RDM4 modulates cold stress resistance in Arabidopsis partially through the CBF-mediated pathway. New Phytol 209:1527–1539

    Article  PubMed  CAS  Google Scholar 

  • Chawade A, Lindlof A, Olsson B, Olsson O (2013) Global expression profiling of Low Temperature Induced Genes in the Chilling Tolerant Japonica Rice Jumli Marshi. PLoS One 8:e81729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen A, Reinheimer J, Brûlé-Babel A, Baumann U, Pallotta M, Fincher GB, Collins NC (2009) Genes and traits associated with chromosome 2H and 5H regions controlling sensitivity of reproductive tissues to frost in barley. Theor Appl Genet 118:1465–1476

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Zhang Y, Ren Y, Xu J, Zhang Z, Wang Y (2012) Genome-wide identification of cold-responsive and new microRNAs in Populus tomentosa by high-throughput sequencing. Biochem Biophys Res Commun 417:892–896

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Han G, Shang C, Li J, Zhang H, Liu F, Wang J, Liu H, Zhang Y (2015a) Proteomic analyses reveal differences in cold acclimation mechanisms in freezing-tolerant and freezing-sensitive cultivars of alfalfa. Front Plant Sci 6:105

    PubMed  PubMed Central  Google Scholar 

  • Chen H, Chen X, Chen D, Li J, Zhang Y, Wang A (2015b) A comparison of the low temperature transcriptomes of two tomato genotypes that differ in freezing tolerance: Solanum lycopersicum and Solanum habrochaites. BMC Plant Biol 15:132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng KS (1993) Rice genetic resources in Yunnan. Wu Zhengyi Symposium on Biodiversity in Yunnan. Yunnan Presshouse of Science and Technology, Kunming, pp 90–94

    Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S, Lee B-h, Hong X, Agarwal M, Zhu JK (2003) ICE1, a regulator of cold induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2007) Cold stress regulation of gene expression plants. Trends Plant Sci 12:444–451

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Zhu JK, Sunkar R (2010) Gene regulation during cold stress acclimation in plants. Methods Mol Biol 639:39–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho HY, Hwang SG, Kim DS, Jang CS (2012) Genome-wide transcriptome analysis of rice genes responsive to chilling stress. Can J Plant Sci 92:447–460

    Article  CAS  Google Scholar 

  • Choi DW, Rodriguez EM, Close TJ (2002) Barley Cbf3 gene identification, expression pattern, and map location. Plant Physiol 129:1781–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke HJ, Siddique KHM (2004) Response of chickpea genotypes to low temperature stress during reproductive development. Field Crops Res 90:323–334

    Article  Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 363:557–572

    Article  CAS  PubMed  Google Scholar 

  • Crimp SJ, Zheng B, Khimashia N, Gobbett DL, Chapman S, Howden M, Nicholls Neville (2016) Recent changes in southern Australian frost occurrence: implications for wheat production risk. Crop Pasture Sci 67:801–811

    Article  Google Scholar 

  • Croser JS, Clarke HJ, Siddique KHM, Khan TN (2003) Low-temperature stress: implications for chickpea (Cicer arietinum L.) improvement. Crit Rev Plant Sci 22:185–219

    Article  Google Scholar 

  • Cui S, Huang F, Wang J, Ma X, Cheng Y, Liu J (2005) A proteomic analysis of cold stress responses in rice seedlings. Proteomics 5:3162–3172

    Article  CAS  PubMed  Google Scholar 

  • Cui D, Xu C, Tang C, Yang C, Yu T, Xin-xiang A, Cao G, Xu F, Zhang J, Hang L (2013) Genetic structure and association mapping of cold tolerance in improved japonica rice germplasm at booting stage. Euphytica 193:369–382

    Article  CAS  Google Scholar 

  • da Cruz RP, Milach SCK (2004) Cold tolerance at the germination stage of rice: methods of evaluation and characterization of genotypes. Sci Agric 61:1–8

    Article  Google Scholar 

  • da Cruz RP, Sperotto RA, Di Cargnelutt, Adamski JM, de FreitasTerra T, Fett JP (2013) Avoiding damage and achieving cold tolerance in rice plants. Food Energy Secur 2:96–119

    Article  Google Scholar 

  • Dai LY, Lin XH, Ye CR, Kato A, Saito K, Yu TQ, Xu FR, Zhang DP (2003) Studies on cold tolerance of rice, Oryza sativa L. III. Molecular basis for special fertility percentage as evaluation criterion of cold tolerance. Acta Agron Sin 29:708–714

    Google Scholar 

  • Dai L, Lin X, Ye C, Ise K, Saito K, Kato A, Xu F, Yu T, Zhang D (2004) Identification of quantitative trait loci controlling cold tolerance at the reproductive stage in Yunnan landrace of rice, Kunmingxiaobaigu. Breed Sci 54:253–258

    Article  CAS  Google Scholar 

  • Dametto A, Sperotto RA, Adamski JM, Blasi ÉA, Cargnelutti D, de Oliveira LF, Ricachenevsky FK, Fregonezi JN, Mariath JE, da Cruz RP, Margis R, Fett JP (2015) Cold tolerance in rice germinating seeds revealed by deep RNAseq analysis of contrasting indica genotypes. Plant Sci 238:1–12

    Article  CAS  PubMed  Google Scholar 

  • De Storme N, Geelen D (2014) The impact of environmental stress on 569 male reproductive development in plants: biological processes 570 and molecular mechanisms. Plant Cell Environ 37:1–18

    Article  PubMed  CAS  Google Scholar 

  • Deng HB, Che FL, Xiao YH, Tang WB, Pan Y, Liu ZX, Chen LY (2011) Effects of low temperature stress during flowering period on pollen characters and flag leaf physiological and biochemical characteristics of rice. Ying Yong Sheng Tai Xue Bao 22:66–72

    CAS  PubMed  Google Scholar 

  • Dhillon T, Stockinger EJ (2013) Cbf14 copy number variation in the A, B, and D genomes of diploid and polyploid wheat. Theor Appl Genet 126:2777–2789

    Article  CAS  PubMed  Google Scholar 

  • Dhillon T, Pearce SP, Stockinger EJ, Distelfeld A, Li C, Knox AK, Vashegyi I, Vágújfalvi A, Galiba G, Dubcovsky J (2010) Regulation of freezing tolerance and flowering in temperate cereals: the VRN-1 connection. Plant Physiol 153:1846–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Y, Li H, Zhang X, Xie Q, Gong Z, Yang S (2015) OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Dev Cell 32:278–289

    Article  CAS  PubMed  Google Scholar 

  • Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF (2009) Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21:972–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong CH, Hu X, Tang W, Zheng X, Kim YS, Lee BH, Zhu JK (2006) A putative Arabidopsis nucleoporin AtNUP160 is critical for RNA export and required for plant tolerance to cold stress. Mol Cell Biol 26:9533–9543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong MA, Farre EM, Thomashow MF (2011) Circadian clock associated 1 and late elongated hypocotyl regulate expression of the C-repeat binding factor (CBF) pathway in Arabidopsis. Proc Natl Acad Sci USA 108:7241–7246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drozdov SN, Titov AF, Balagurova NI, Kritenko SP (1984) The effect of temperature on cold and heat resistance of growing plants. II. Cold resistant species. J Exp Bot 35:1603–1608

    Article  Google Scholar 

  • Du F, Xu JN, Li D, Wang XY (2015) The identification of novel and differentially expressed apple-tree genes under low-temperature stress using high-throughput Illumina sequencing. Mol Biol Rep 42:569–580

    Article  CAS  PubMed  Google Scholar 

  • Dumont E, Fontaine V, Vuylsteker C, Sellier H, Bodèle S, Voedts N, Devaux R, Frise M, Avia K, Hilbert JL, Bahrman N, Hanocq E, Lejeune-Hénaut I, Delbreil B (2009) Association of sugar content QTL and PQL with physiological traits relevant to frost damage resistance in pea under field and controlled conditions. Theor Appl Genet 118:1561–1571

    Article  CAS  PubMed  Google Scholar 

  • Dumont E, Bahrman N, Goulas E, Valot B, Sellier H, Hilbert JL, Vuylsteker C, Lejeune-Hénaut I, Delbreil B (2011) A proteomic approach to decipher chilling response from cold acclimation in pea (Pisum sativum L.). Plant Sci 180:86–98

    Article  CAS  PubMed  Google Scholar 

  • Eagles HA, Wilson J, Cane K, Vallance N, Eastwood RF, Kuchel H, Martin PJ, Trevaskis B (2016) Frost-tolerance genes Fr-A2 and Fr-B2 in Australian wheat and their effects on days to heading and grain yield in lower rainfall environments in southern Australia. Crop Pasture Sci 67:119–127

    CAS  Google Scholar 

  • Eizenga GC, Shakiba E, Jodari F, Duke S, Korniviel P, Jackson A, Mezey J, McCouch S (2015) The secrets of cold tolerance at seedling stage and heading in rice as revealed by association mapping. PAG, 2015, San Diego, CA

  • Ellis RH, Summerfield RJ, Edmeades GO, Roberts EH (1992) Photoperiod, temperature and the interval from sowing to tassel initiation in diverse cultivars of maize. Crop Sci 32:1225–1232

    Article  Google Scholar 

  • Endo T, Chiba B, Wagatsuma K, Saeki K, Ando T, Shomura A, Mizubayashi T, Ueda T, Yamamato T, Nishio T (2016) Detection of QTLs for cold tolerance of rice cultivar ‘Kuchum’ and effect of QTL pyramiding. Theor Appl Genet 129:631–640

    Article  CAS  PubMed  Google Scholar 

  • Falk DE, Reinbergs E, Meatherall G (1997) OAC Elmira winter barley. Can J Plant Sci 77:639–640

    Article  Google Scholar 

  • Farrell TC, Fox KM, William RL, Fukai S, Lewin LG (2006) Minimising cold damage during reproductive development among temperate rice genotypes. II. Genotypic variation and flowering traits related to cold tolerance screening. Aust J Agric Res 57:89–100

    Article  Google Scholar 

  • Farrell TC, Williams RL, Fukai S (2001) The cost of low temperature to the NSW rice industry. Proc 10th Aust Agron Conf 1:1300–1430

    Google Scholar 

  • Fiedler K, Bekele WA, Matschegewski C, Snowdon R, Wieckhorst S, Zacharias A, Uptmoor R (2016) Cold tolerance during juvenile development in sorghum: a comparative analysis by genome wide association and linkage mapping. Plant Breed. doi:10.1111/pbr.12394

    Google Scholar 

  • Fiedler K, Bekele WA, Friedt W, Snowdon R, Stützel H, Zacharias A, Uptmoor R (2012) Genetic dissection of the temperature dependent emergence processes in sorghum using a cumulative emergence model and stability parameters. Theor Appl Genet 125(8):1647–1661

    Article  PubMed  Google Scholar 

  • Fisk SP, Cuesta-Marcos A, Cistue L, Rusell J, Smith KP, Baenziger S, Bedo Z, Corey A, Filichkin T (2013) FR-H3: a new QTL to assist in the development of fall-sown barley with superior low temperature tolerance. Theor Appl Genet 126:335–347

    Article  PubMed  Google Scholar 

  • Foolad MR, Chen FQ, Lin GY (1998) RFLP mapping of QTLs conferring cold tolerance during seed germination in an interspecific cross of tomato. Mol Breed 4:519–529

    Article  CAS  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold-acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fowler SG, Cook D, Thomashow MF (2005) Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock. Plant Physiol 137:961–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fracheboud Y, Ribaut JM, Vargas M, Messmer R, Stamp P (2002) Identification of quantitative trait loci for cold-tolerance of photosynthesis in maize (Zea mays L.). J Exp Bot 53:1967–1977

    Article  CAS  PubMed  Google Scholar 

  • Fracheboud Y, Jompuk C, Ribaut J-M, Stamp P, Leipner J (2004) Genetic analysis of cold-tolerance of photosynthesis in maize. Plant Mol Biol 56:241–253

    Article  CAS  PubMed  Google Scholar 

  • Francia E, Rizza F, Cattivelli L, Stanca AM, Galiba G, Toth B, Hayes PM, Skinner JS, Pecchioni N (2004) Two loci on chromosome 5H determine low-temperature tolerance in a ‘Nure’ (winter)_‘Tre- ‘Tremois’ (spring) barley map. Theor Appl Genet 108:670–680

    Article  CAS  PubMed  Google Scholar 

  • Francia E, Barabaschi D, Tondelli A, Laidò G, Rizza F, Stanca AM, Busconi M, Fogher C, Stockinger EJ, Pecchioni N (2007) Fine mapping of a HvCBF gene cluster at the frost resistance locus Fr-H2 in barley. Theor Appl Genet 115:1083–1091

    Article  CAS  PubMed  Google Scholar 

  • Francia E, Morcia C, Pasquariello M, Mazzamurro V, Milc JA, Rizza F, Terzi V, Pecchioni N (2016) Copy number variation at the HvCBF4HvCBF2 genomic segment is a major component of frost resistance in barley. Plant Mol Biol 92:161–175

    Article  CAS  PubMed  Google Scholar 

  • Franklin KA, Whitelam GC (2007) Light-quality regulation of freezing tolerance in Arabidopsis thaliana. Nat Genet 39:1410–1413

    Article  CAS  PubMed  Google Scholar 

  • Frederiks TM, Christopher JT, Fletcher SHE, Borrell AK (2011) Post head-emergence frost resistance of barley genotypes in the northern grain region of Australia. Crop Pasture Sci 62:736–745

    Article  Google Scholar 

  • Fujino K, Iwata N (2011) Selection for low-temperature germinability on the short arm of chromosome 3 in rice cultivars adapted to Hokkaido, Japan. Theor Appl Genet 123:1089–1097

    Article  PubMed  Google Scholar 

  • Fujino K, Matsuda Y ( 2010) Genome-wide analysis of genes targeted by qLTG3-1 controlling low-temperature germinability in rice. Plant Mol Biol 72:137–152

    Article  CAS  PubMed  Google Scholar 

  • Fujino K, Sekiguchi H (2011) Origins of functional nucleotide polymorphisms in a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice. Plant Mol Biol 75:1–10

    Article  CAS  PubMed  Google Scholar 

  • Fujino K, Sekiguchi H, Sato T, Kiuchi H, Nonoue Y, Takeuchi Y, Ando T, Lin SY, Yano M (2004) Mapping of quantitative trait loci controlling low-temperature germinability in rice (Oryza sativa L.). Theor Appl Genet 108:794–799

    Article  CAS  PubMed  Google Scholar 

  • Fujino K, Sekigushi H, Matsuda Y, Sugimoto K, Ono K, Yano M (2008) Molecular identification of a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice. Proc Natl Acad Sci USA 105:12623–12628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuller MP, Fuller AM, Kaniouras S, Christophers J, Fredericks T (2007) The freezing characteristics of wheat at ear emergence. Eur J Agron 26:435–441

    Article  Google Scholar 

  • Funatsuki H, Kawaguchi K, Matsuba S, Sato Y, Ishimoto M (2005) Mapping of QTL associated with chilling tolerance during reproductive growth in soybean. Theor Appl Genet 111:851–861

    Article  CAS  PubMed  Google Scholar 

  • Galiba G, Quarrie SA, Sutka J, Morgounov A, Snape JW (1995) RFLP mapping of the vernalization (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat. Theor Appl Genet 90:1174–1179

    Article  CAS  PubMed  Google Scholar 

  • Galiba G, Vágújfalvi A, Li C, Soltész A, Dubcovsky J (2009) Regulatory genes involved in the determination of frost tolerance in temperate cereals. Plant Sci 176:12–19

    Article  CAS  Google Scholar 

  • Gault CM, Budka JS, Lepak NK, Cotich D, Rodger-Melnick E, Buckler ES (2016) Cellular processes and regulatory networks searching for the genetic basis of cold tolerance in Maize’s Sister Genus Tripsacum. PAG, San Diego

    Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gilmour SJ, Artus NN, Thomashow MF (1992) cDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thaliana. Plant Mol Biol 18:13–21

    Article  CAS  PubMed  Google Scholar 

  • Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Over expression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilmour SJ, Fowler SG, Thomashow MF (2004) Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Mol Biol 54:767–781

    Article  CAS  PubMed  Google Scholar 

  • Glaszmann JC, Kaw RN, Khush GS (1990) Genetic divergence among cold tolerant rices (Oryza sativa L.). Euphytica 45:95–104

    Google Scholar 

  • Godfray HC, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  CAS  PubMed  Google Scholar 

  • Gomez LD, Vanacker H, Buchner P, Noctor G, Foyer CH (2004) Intercellular distribution of glutathione synthesis in maize leaves and its response to short-term chilling. Plant Physiol 134:1662–1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodstal FJ, Kohler GR, Randall LB, Bloom AJ, Clair DAS (2005) A major QTL introgressed from wild Lycopersicon hirsutum confers chilling tolerance to cultivated tomato (Lycopersicon esculentum). Theor Appl Genet 111:898–905

    Article  CAS  Google Scholar 

  • Greenup AG, Sasani S, Oliver SN, Walford SA, Millar AA, Trevaskis B (2011) Transcriptome analysis of the vernalization response in Barley (Hordeum vulgare) seedlings. PLoS One 6:e17900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimaud F, Renaut J, Dumont E, Sergeant K, Lucau-Danila A, Blervacq AS, Sellier H, Bahrman N, Lejeune-Hénaut I, Delbreil B, Goulas E (2013) Exploring chloroplastic changes related to chilling and freezing tolerance during cold acclimation of pea (Pisum sativum L.). J Proteom 80:145–159

    Article  CAS  Google Scholar 

  • Guan Q, Wu J, Zhang Y, Jiang C, Chai C, Zhu J (2013a) A DEAD box RNA helicase is critical for pre-mRNA splicing, cold-responsive gene regulation, and cold tolerance in Arabidopsis. Plant Cell 25:342–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan YN, Huang ZL, Zhang WJ, Shi XD, Zhang PP (2013b) Effects of low temperature stress on photosynthetic performance of different genotypes wheat cultivars. Ying Yong Sheng Tai Xue Bao 24:1895–1899

    CAS  PubMed  Google Scholar 

  • Gulik PJ, Drouin S, Yu Z, Danyluk J, Poisson G, Monroy AF, Sarhan F (2005) Transcriptome comparison of winter and spring wheat responding to low temperature. Genome 48:913–923

    Article  Google Scholar 

  • Guy CL, Li QB (1998) The organization and evolution of the spinach stress 70 molecular chaperone gene family. Plant Cell 10:539–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han LZ, Zhang YY, Qiao YL, Cao GL, Zhang SY, Kim JH, Koh HJ (2006) Genetic and QTL analysis for low-temperature vigor of germination in rice. Yi Chuan Xue Bao 33:998–1006

    CAS  PubMed  Google Scholar 

  • Han L, Qiao Y, Zhang S, Zhang Y, Cao G, Kim J, Lee K, Koh H (2007) Identification of quantitative trait loci for cold response of seedling vigor traits in rice. J Genet Genome 34:239–246

    Article  CAS  Google Scholar 

  • Hanin M, Brini F, Ebel C, Toda Y, Takeda S, Masmoudi K (2011) Plant dehydrins and stress tolerance Versatile proteins for complex mechanisms. Plant Signal Behav 6:1503–1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto M, Komatsu S (2007) Proteomic analysis of rice seedlings during cold stress. Proteomics 7:1293–1302

    Article  CAS  PubMed  Google Scholar 

  • Herman EM, Rotter K, Premakumar R, Elwinger G, Bae H, Ehler-King L, Chen S, Livingston DP 3rd (2006) Additional freeze hardiness in wheat acquired by exposure to 23 8C is associated with extensive physiological, morphological, and molecular changes. J Exp Bot 57:3601–3618

    Article  CAS  PubMed  Google Scholar 

  • Hou MY, Wang CM, Jiang L, Wan JM, Yasui H, Yoshimura A (2004) Inheritance and QTL mapping of low temperature germinability in rice (Oryza sativa L.). Yi Chuan Xue Bao 31:701–706

    CAS  PubMed  Google Scholar 

  • Houde M, Dhindsa RS, Sarhan F (1992) A molecular marker to select for freezing tolerance in Gramineae. Mol Gen Genet 234:43–48

    CAS  PubMed  Google Scholar 

  • Hsieh TH, Lee JT, Charng YY, Chan MT (2002a) Tomato plants ectopically expressing Arabidopsis CBF1show enhanced resistance to water deficit stress. Plant Physiol 130:618–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh TH, Lee JT, Yang PT, Chiu LH, Charng YY, Wang YC, Chan MT (2002b) Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129:1086–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Zhang L, Zhao L, Li J, He S, Zhou K, Yang F, Huang M, Jiang L, Li L (2011) Trichostatin A selectively suppresses the cold-induced transcription of the ZmDREB1 gene in maize. PLoS One 6:e22132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Zhang L, He S, Huang M, Tan J, Zhao L, Yan S, Li H, Zhou K, Liang Y, Li L (2012) Cold stress selectively unsilences tandem repeats in heterochromatin associated with accumulation of H3K9ac. Plant Cell Environ 35:2130–2142

    Article  CAS  PubMed  Google Scholar 

  • Hu S, Lübberstedt T, Zhao G, Lee M (2016) QTL mapping of low-temperature germination ability in the maize IBM Syn4 RIL population. PLoS One 11:e0152795

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang X, Han B (2014) Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol 65:531–551

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Zhang J, Li W, Hu W, Duan L, Feng Y, Qiu F, Yue B (2013) Genome-wide association analysis of ten chilling tolerance indices at the germination and seedling stages in maize. J Integr Plant Biol 55:735–744

    Article  CAS  PubMed  Google Scholar 

  • Huang CK, Shen YL, Huang LF, Wu SJ, Yeh CH, Lu CA (2015) The DEAD-Box RNA helicase AtRH7/PRH75 participates in pre-rRNA processing, plant development and cold tolerance in Arabidopsis. Plant Cell Physiol 57:174–191

    Article  PubMed  CAS  Google Scholar 

  • Hughes MA, Dunn MA (1996) The molecular biology of plant acclimation to low temperature. J Exp Bot 47:291–305

    Article  CAS  Google Scholar 

  • Hund A, Fracheboud Y, Soldati A, Frascaroli E, Salvi S, Stamp P (2004) QTL controlling root and shoot traits of maize seedlings under cold stress. Theor Appl Genet 109:618–629

    Article  CAS  PubMed  Google Scholar 

  • Hur YJ, Cho JH, Park HS, Noh TH, Park DS, Lee JY, Sohn YB, Shin D, Song YC, Kwon YU, Lee JH (2016) Pyramiding of two rice bacterial blight resistance genes, Xa3 and Xa4, and a closely linked cold-tolerance QTL on chromosome 11. Theor Appl Genet 129:1861–1871

    Article  CAS  PubMed  Google Scholar 

  • Ikeda T, Ohnishi S, Senda M, Miyoshi T, Ishimoto M, Kitamura K, Funatsuki H (2009) A novel major quantitative trait locus controlling seed development at low temperature in soybean (Glycine max). Theor Appl Genet 118:1477–1488

    Article  PubMed  Google Scholar 

  • IRRI (1979) Report of a rice cold tolerance workshop. In: IRRI Proceedings of rice cold tolerance workshop, Office of Rural Development, Suweon, Korea, p 139

  • Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153

    Article  CAS  PubMed  Google Scholar 

  • Iwata N, Fujino K (2010) Genetic effects of major QTLs controlling low-temperature germinability in different genetic backgrounds in rice (Oryza sativa L.). Genome 53:763–768

    Article  PubMed  Google Scholar 

  • Iwata N, Shinada H, Kiuchi H, Sato T, Fujino K (2010) Mapping QTLs controlling seedling establishment using a direct seeding method in rice. Breed Sci 60:353–360

    Article  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106

    Article  CAS  PubMed  Google Scholar 

  • Jaglo-Ottosen KR, Kleff S, Amundsen KL, Zhang X, Haake V, Zhang JZ, Deits T, Thomashow MF (2001) Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol 127:910–917

    Article  Google Scholar 

  • Janmohammadi M, Zolla L, Rinalducci S (2015) Low temperature tolerance in plants: changes at the protein level. Phytochemistry 117:76–89

    Article  CAS  PubMed  Google Scholar 

  • Jeong EG, Yea JD, Baek MK, Moon HP, Choi HC, Yoon KM, Ahn SN (2000) Estimation of critical temperature for traits related to cold tolerance in rice. Korean J Breed 32:363–368

    Google Scholar 

  • Ji SL, Jiang L, Wang YH, Zhang WW, Liu X, Liu SJ, Chen LM, Zhai HQ, Wan JM (2009) Quantitative trait loci mapping and stability for low temperature germination ability of rice. Plant Breed 128:387–392

    Article  Google Scholar 

  • Ji Z, Zeng Y, Zeng D, Ma L, Li X, Liu B, Yang C (2010) Identification of QTLs for rice cold tolerance at plumule and 3-leaf-seedling stages by using QTLNetwork software. Rice Sci 17 (4)

  • Ji H, Wang Y, Cloix C, Li K, Jenkins GI, Wang S, Shang Z, Shi Y, Yang S, Li X (2015) The Arabidopsis RCC1 family protein TCF1 regulates freezing tolerance and cold acclimation through modulating lignin biosynthesis. PLoS Genet 11:e1005471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jia Y, Ding Y, ShiY Zhang X, Gong Z, Yang S (2016) The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis. New Phytol 212:345–353

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Jin YM, Lee J, Lee KL, Piao R, Han L, Shin JC, Jin RD, Cao T, Pan HY, Du X, Ko HJ (2011) Quantitative trait loci for cold tolerance of rice recombinant inbred lines in low temperature environments. Mol Cell 32:579–587

    Article  CAS  Google Scholar 

  • Jompuk C, Fracheboud Y, Stamp P, Leipner J (2005) Mapping of quantitative trait loci associated with chilling tolerance in maize (Zea mays L.) seedlings grown under field conditions. J Exp Bot 56:1153–1163

    Article  CAS  PubMed  Google Scholar 

  • Kabaki N, Yoneyama T, Tajima K (1982) Physiological mechanism of growth retardation in rice seedlings as affected by low temperature. Jpn J Crop Sci 51:82–88

    Article  CAS  Google Scholar 

  • Kahraman A, Kusmenoglu I, Aydin N, Aydogan A, Erskine W, Muehlbauer FJ (2004) QTL mapping of winter hardiness genes in lentil. Crop Sci 44:13–22

    Article  CAS  Google Scholar 

  • Kaneda C, Beachell HM (1974) Response of indica-japonica rice hybrids to low temperatures. SABRAO J 6:17–32

    Google Scholar 

  • Kang G, Li G, Yang W, Han Q, Ma H, Wang Y, Ren J, Zhu Y, Guo T (2013) Transcriptional profile of the spring freeze response in the leaves of bread wheat (Triticum aestivum L.). Acta Physiol Plant 35:575–587

    Article  CAS  Google Scholar 

  • Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819:137–148

    Article  CAS  PubMed  Google Scholar 

  • Kim Y et al (2013) Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis. Plant J 75:364–376

    Article  CAS  PubMed  Google Scholar 

  • Kim SM, Suh JP, Lee CK, Lee JH, Kim YG, Jena KK (2014) QTL mapping and development of candidate gene-derived DNA markers associated with seedling cold tolerance in rice (Oryza sativa L.). Mol Genet Genom 289:333–343

    Article  CAS  Google Scholar 

  • Kim YS, Lee M, Lee JH, Lee HJ, Park CM (2015) The unified ICE-CBF pathway provides a transcriptional feedback control of freezing tolerance during cold acclimation in Arabidopsis. Plant Mol Biol 89:187–201

    Article  CAS  PubMed  Google Scholar 

  • Kisha TJ, Taylor GA, Bowman HF, Wiesner LE, Jackson GD, Carlson GR, Bergman JW, Kushnak JD, Stallknecht GF, Stewart VR (1992) Registration of Tiber hard red winter wheat. Crop Sci 32:1292–1293

    Article  Google Scholar 

  • Kizis D, Lumbreras V, Pages M (2001) Role of AP2/EREBP transcription factors in gene regulation during abiotic stress. FEBS Lett 498:187–189

    Article  CAS  PubMed  Google Scholar 

  • Klein A, Houtin H, Rond C, Marget P, Jacquin f, Boucherot K, Huart m, Riviere n, Boutet G, Lejeune-Henaut I (2014) QTL analysis of frost damage in pea suggests different mechanisms involved in frost tolerance. Theor Appl Genet:1319–1330

  • Kole C, Thormann CE, Karlsson BH, Palta JP, Gaffney P, Yandell B, Osborn TC (2002) Comparative mapping of loci controlling winter survival and related traits in oilseed Brassica rapa and B. napus. Mol Breeding 9:201–210

    Article  CAS  Google Scholar 

  • Knight H (2000) Calcium signaling during abiotic stress in plants. Int Rev Cytol 195:269–325

    Article  CAS  PubMed  Google Scholar 

  • Knight MR, Knight H (2012) Low-temperature perception leading to gene expression and cold tolerance in higher plants. New Phytol 195:737–751

    Article  CAS  PubMed  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1996) Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell 8:489–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knoll J, Gunaratna N, Ejeta G (2008) QTL analysis of early season cold tolerance in Sorghum. Theor Appl Genet 116:577–587

    Article  PubMed  Google Scholar 

  • Knox AK, Li C, Vágújfalvi A, Galiba G, Stockinger EJ, Dubcovsky J (2008) Identification of candidate CBF genes for the frost tolerance locus Fr-Am 2 in Triticum monococcum. Plant Mol Biol 67:257–270

    Article  CAS  PubMed  Google Scholar 

  • Knox AK, Dhillon T, Cheng H, Tondelli A, Pecchioni N, Stockinger EJ (2010) CBF gene copy number variation at Frost Resistance-2 is associated with levels of freezing tolerance in temperate-climate cereals. Theor Appl Genet 121:21–35

    Article  PubMed  Google Scholar 

  • Kobayashi F, Takumi S, Kume S, Ishibashi M, Ohno R, Murai K, Nakamura C (2005) Regulation by Vrn-1/Fr-1 chromosomal intervals of CBF-mediated Cor/Lea gene expression and freezing tolerance in common wheat. J Exp Bot 56:887–895

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi F, Maeta E, Terashima A, Kawaura K, Ogihara Y, Takumi S (2008) Development of abiotic stress tolerance via bZIP-type transcription factor LIP19 in common wheat. J Exp Bot 59:891–905

    Article  CAS  PubMed  Google Scholar 

  • Koc I, Filiz E, Tombuloglu H (2015) Assessment of miRNA expression profile and differential expression pattern of target genes in cold-tolerant and cold-sensitive tomato cultivars. Biotech Biotechnol Equip 29:851–860

    Article  CAS  Google Scholar 

  • Kolar SC, Hayes PM, Chen THH, Lindernan RG (1991) Genotypic variation for cold tolerance in winter and facultative barley. Crop Sci 31:1149–1152

    Article  Google Scholar 

  • Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koseki M, Kitazawa N, Yonebayashi S, Maehara Y, Wang ZX, Minobe Y (2010) Identification and fine mapping of a major quantitative trait locus originating from wild rice, controlling cold tolerance at the seedling stage. Mol Genet Genom 284:45–54

    Article  CAS  Google Scholar 

  • Kosová K, Tom Prásil I, Prásilová P, Vítámvás P, Chrpová J (2010) The development of frost tolerance and DHN5 protein accumulation in barley (Hordeum vulgare) doubled haploid lines derived from Atlas 68 × Igri cross during cold acclimation. J Plant Physiol 167:343–350

    Article  PubMed  CAS  Google Scholar 

  • Kosová K, Vítámvás P, Prášil IT (2011) Expression of dehydrins in wheat and barley under different temperatures. Plant Sci 180:46–52

    Article  PubMed  CAS  Google Scholar 

  • Kosová K, Vítámvás P, Planchon S, Renaut J, Vanková R, Prášil IT (2013) Proteome analysis of cold response in spring and winter wheat (Triticum aestivum) crowns reveals similarities in stress adaptation and differences in regulatory processes between the growth habits. J Proteome Res 12:4830–4845

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Malik J, Thakur P, Kaistha S, Sharma KD, Upadhyaya HD, Berger JD, Nayyar H (2011) Growth and metabolic responses of contrasting chickpea (Cicer arietinum L.) genotypes to chilling stress at reproductive phase. Acta Physiol Plant 33:779–787

    Article  CAS  Google Scholar 

  • Kurkela S, Franck M (1990) Cloning and characterization of a cold- and ABA-inducible Arabidopsis gene. Plant Mol Biol 15:137–144

    Article  CAS  PubMed  Google Scholar 

  • Kuroki M, Saito K, Matsuba S, Yokogami N, Shimizu H, Ando I, Sato Y (2007) A quantitative trait locus for cold tolerance at the booting stage on rice chromosome 8. Theor Appl Genet 115:593–600

    Article  PubMed  Google Scholar 

  • Kwon CS, Lee D, Choi G, Chung WI (2009) Histone occupancy- dependent and-independent removal of H3K27 trimethylation at cold- responsive genes in Arabidopsis. Plant J 60:112–121

    Article  CAS  PubMed  Google Scholar 

  • Lang Z, Zhu J (2015) OST1 phosphorylates ICE1 to enhance plant cold tolerance. Sci China Life Sci 58:317–318

    Article  PubMed  Google Scholar 

  • Laudencia-Chingcuano D, Fowler DB (2015) Deep sequencing of cold acclimated wheat crown transcriptome. PAG San Diego, CA 10–14 January

  • Lee MH (2001) Low temperature tolerance in rice: the Korean experience. Pp. 109–117 in S. Fukai and J. Basnayake, eds. Increased lowland rice production in the Mekong Region. In: Proceedings of an international workshop, Vientiane, Laos, 30 October to 2 November 2000. Australian Center for International Agricultural Research, Canberra, Australia

  • Lee CM, Thomashow MF (2012) Photoperiodic regulation of the C repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana. Proc Natl Acad Sci USA 109:15054–15059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee BH, Henderson DA, Zhu JK (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17:3155–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee BH, Kapoor A, Zhu J, Zhu JK (2006) STABILIZED1, a stress-upregulated nuclear protein, is required for pre-mRNA splicing, mRNA turnover, and stress tolerance in Arabidopsis. Plant Cell 18:1736–1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Lee W, Kwon S-W (2015) A quantitative shotgun proteomics analysis of germinated rice embryos and coleoptiles under low-temperature conditions. Proteome Sci 13:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Legrand S, Marque G, Blassiau C, Bluteau A, Canoy AS, Fontaine V, Jaminon O, Bahrman N, Mautord J, Morin J, Petit A, Baranger A, Rivière N, Wilmer J, Delbreil B, Lejeune-Hénaut I (2013) Combining gene expression and genetic analyses to identify candidate genes involved in cold responses in pea. J Plant Physiol 170:1148–1157

    Article  CAS  PubMed  Google Scholar 

  • Lejeune-Henaut I, Hanocq E, Bethenourt L, Fontaine V, Delbreil B, Morin J, Petit A, Devaux R, Boilleau M, Stempniak JJ (2008) The flowering locus Hr colocalizes with a major QTL affecting winter frost tolerance in Pisum sativum L. Theor Appl Genet 116:1105–1116

    Article  CAS  PubMed  Google Scholar 

  • Li TG, Guo WM (1993) Identification and study on tolerance in main stresses of China cultivated rice germplasm resource. In: Ying CS (ed) Rice germplasm resources in China. China Agricultural Science and Technology Press, Beijing, pp 71–75

    Google Scholar 

  • Li L, Liu X, Xie K, Wang Y, Liu F, Lin Q, Wang W, Yang C, Lu B, Liu S, Chen L, Jiang L, Wan J (2013) qLTG-9, a stable quantitative trait locus for low-temperature germination in rice (Oryza sativa L.). Theor Appl Genet 126:2313–2322

    Article  CAS  PubMed  Google Scholar 

  • Limin AE, Fowler DB (2002) Developmental traits affecting low-temperature tolerance response in near-isogenic lines for the Vernalization locus Vrn-A1 in wheat (Triticum aestivum L. em Thell). Ann Bot 89:579–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin C, Thomashow MF (1992) A cold-regulated Arabidopsis gene encodes a polypeptide having potent cryoprotective activity. Biochem Biophys Res Commun 183:1103–1108

    Article  CAS  PubMed  Google Scholar 

  • Lindlöf A, Chawade A, Sikora P, Olsson O (2015) Comparative transcriptomics of Sijung and Jumli Marshi rice during early chilling stress imply multiple protective mechanisms. PLoS One 10:e0125385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lissarre M, Ohta M, Sato A, Miura K (2010) Cold-responsive gene regulation during cold acclimation in plants. Plant Signal Behav 5:948–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain, separate two cellular signal transduction pathways in drought- and low temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Sun C, Tan L, Fu Y, Li D, Wang X (2003) Identification and mapping of quantitative trait loci controlling cold-tolerance of Chinese common wild rice (O. rufipogon Griff.) at booting to flowering stages. Chinese Sci Bull 48:2068–2071

    Article  Google Scholar 

  • Liu F, Xu W, Qa Song, Tan L, Liu J, Zhu Z, Fu Y, Su Z, Sun C (2013) Microarray-assisted fine-mapping of quantitative trait loci for cold tolerance in rice. Mol Plant 6:757–767

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Maurer HP, Li G, Tucker MR, Gowda M et al (2014) Genetic architecture of winter hardiness and frost tolerance in triticale. PLoS One 9:e99848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu W, Lu T, Li Y, Pan X, Duan Y, Min J, Fu X, Sheng X, Xiao J, Liu S, Tan J, Yao Y, Li X (2015a) Mapping of quantitative trait loci for cold tolerance at the early seedling stage in landrace rice Xiang 743. Euphytica 201:401–409

    Article  CAS  Google Scholar 

  • Liu X, Hao L, Li D, Zhu L, Hu S (2015b) Long non-coding RNAs and their biological roles in plants. Genom Proteom Bioinf 13:137–147

    Article  Google Scholar 

  • Liu L, Venkatesh J, Jo YD, Koeda S, Hosokawa M, Kang JH, Goritschnig S, Kang BC (2016) Fine mapping and identification of candidate genes for the sy-2 locus in a temperature-sensitive chili pepper (Capsicum chinense). Theor Appl Genet 129:1541–1556

    Article  CAS  PubMed  Google Scholar 

  • Long-Zhai H, Yuan-Yuan Z, Yong-Li Q, Gui-Lan C, San-Yuan Z, Jong-Hwan K, Hee-Jong K (2006) Genetic and QTL analysis for low-temperature vigor of germination in rice. Acta Genet Sinica 33:998–1006

    Article  Google Scholar 

  • Long-zhi H, Yong-li Q, Gui-lan C, Yuan-yuan Z, Yong-ping A, Jong-doo Y, Hee-jong K (2004) QTLs analysis of cold tolerance during early growth period for rice. Rice Sci 11:245–250

    Google Scholar 

  • Lou Q, Chen L, Sun Z, Xing Y, Li J, Xu X, Mei H, Luo L (2007) A major QTL associated with cold tolerance at seedling stage in rice (Oryza sativa L.). Euphytica 158:87–94

    Article  CAS  Google Scholar 

  • Lucau-Danila A, Toitot C, Goulas E, Blervacq AS, Hot D, Bahrman N, Sellier H, Lejeune-Henaut Delbreil B (2012) Transcriptome analysis in pea allows to distinguish chilling and acclimation mechanisms. Plant Physiol Biochem 58:236–244

    Article  CAS  PubMed  Google Scholar 

  • Lv DK, Bai X, Li Y, Ding XD, Ge Y, Cai H, Ji W, Wu N, Zhu YM (2010) Profiling of cold-stress-responsive miRNAs in rice by microarrays. Gene 459:39–47

    Article  CAS  PubMed  Google Scholar 

  • Lv Y, Guo Z, Li X, Ye H, Li X, Xiong L (2016) New insights into the genetic basis of natural chilling and cold shock tolerance in rice by genome-wide association analysis. Plant Cell Environ 39:556–570

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Dai X, Xu Y, Luo W, Zheng X, Zeng D, Pan Y, Lin X, Liu H, Zhang D, Xiao J, Guo X, Xu S, Niu Y, Jin J, Zhang H, Xu X, Li L, Wang W, Qian Q, Ge S, Chong K (2015) COLD1 confers chilling tolerance in rice. Cell 160:1209–1221

    Article  CAS  PubMed  Google Scholar 

  • Mackill DJ, Lei XM (1997) Genetic variation for traits related to temperate adaptation of rice cultivars. Crop Sci 37:1340–1346

    Article  Google Scholar 

  • Mao D, Yu L, Chen D, Li L, Zhu Y, Xiao Y, Zhang D, Chen C (2015) Multiple cold resistance loci confer the high cold tolerance adaptation of Dongxiang wild rice (Oryza rufipogon) to its high-latitude habitat. Theor Appl Genet 128:1359–1371

    Article  CAS  PubMed  Google Scholar 

  • Mastrangelo AM, Belloni S, Barilli S, Ruperti B, Fonzo ND, Stanca AM, Cattivelli L (2005) Low temperature promotes intron retention in two e-cor genes of durum wheat. Planta 221:705–715

    Article  CAS  PubMed  Google Scholar 

  • Matsui A, Nguyen AH, Nakaminami K, Seki M (2013) Arabidopsis non-coding RNA regulation in abiotic stress responses. Int J Mol Sci 14:22642–22654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Medina J, Bargues M, Terol J, Perez-Alonso Salinas J (1999) The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol 119:463–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medina J, Catalá R, Salinas J (2011) The CBFs: three arabidopsis transcription factors to cold acclimate. Plant Sci 180:3–11

    Article  CAS  PubMed  Google Scholar 

  • Meissner M, Orsini E, Ruschhaupt M, Melchinger AE, Hincha DK, Heyer AG (2013) Mapping quantitative trait loci for freezing tolerance in a recombinant inbred line population of Arabidopsis thaliana accessions Tenela and C24 reveals REVEILLE1 as negative regulator of cold acclimation. Plant Cell Environ 36:1256–1267

    Article  CAS  PubMed  Google Scholar 

  • Meng PH, Macquet A, Loudet O, Marion-Poll A, North HM (2008) Analysis of natural allelic variation controlling Arabidopsis thaliana seed germinability in response to cold and dark: identification of three major quantitative trait loci. Mol Plant 1:145–154

    Article  CAS  PubMed  Google Scholar 

  • Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 4:237–251

    Article  CAS  Google Scholar 

  • Miedema P, Sinnaeve J (1980) Photosynthesis and respiration of maize seedlings at suboptimal temperatures. J Exp Bot 31:813–819

    Article  Google Scholar 

  • Miller AK, Galiba G, Dubcovsky J (2006) A cluster of 11 CBF transcription factors is located at the frost tolerance locus Fr-Am 2 in Triticum monococcum. Mol Genet Genom 275:193–203

    Article  CAS  Google Scholar 

  • Misawa S, Mori N, Takumi S, Yoshida S, Nakamura C (2000) Mapping of QTLs for low temperature response in seedlings of rice (Oryza sativa L.). Cereal Res Commun 28:33–40

    CAS  Google Scholar 

  • Mitchell-Olds T (2010) Complex-trait analysis in plants. Genome Biol 11:113

    Article  PubMed  PubMed Central  Google Scholar 

  • Miura K, Furumoto T (2013) Cold signaling and cold response in plants. Int J Mol Sci 14:5312–5337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miura K, Lin SY, Yano M, Nagamine T (2001) Mapping quantitative trait loci controlling low-temperature germinability in rice (Oryza sativa L.). Breed Sci 51:293–299

    Article  CAS  Google Scholar 

  • Miura K, Jin JB, Lee J, Yoo CY, Stirm V, Miura T, Ashworth EN, Bressan RA, Yun DJ, Hasegawa PM (2007) SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19:1403–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta (BBA) Gene Regul Mech 1819:86–96

    Article  CAS  Google Scholar 

  • Mohammadi R, Amri A, Ahmadi H, Jafarzadeh (2015) Characterization of tetraploid wheat landraces for cold tolerance and agronomic traits under rainfed conditions of Iran. J Agric Sci 153:631–645

    Article  CAS  Google Scholar 

  • Monroy AF, Dryanova A, Malette B, Oren DH, Ridha Farajalla M, Liu W, Danyluk J, Ubayasena LW, Kane K, Scoles GJ, Sarhan F, Gulick PJ (2007) Regulatory gene candidates and gene expression analysis of cold acclimation in winter and spring wheat. Plant Mol Biol 64:409–423

    Article  CAS  PubMed  Google Scholar 

  • Moraes de Freitas GP, Basu S, Ramegowda V, Braga EB, Pereira A (2016) Comparative analysis of gene expression in response to cold stress in diverse rice genotypes. Biochem Biophys Res Commun 471:253–259

    Article  CAS  PubMed  Google Scholar 

  • Mori M, Onishi K, Tokizono Y, Shinada H, Yoshimura T, Numao Y, Miura H, Sato T (2011) Detection of novel quantitative trait locus for cold tolerance at the booting stage derived from a tropical japonica rice variety Silewah. Breed Sci 61:61–68

    Article  Google Scholar 

  • Motomura Y, Kobayashi F, Iehisa JCM, Takumi S (2013) A major quantitative trait locus for cold-responsive gene expression is linked to frost-resistance gene Fr-A2 in common wheat. Breed Sci 63:58–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nah G, Lee M, Kim DS, Rayburn AL, Voigt T, Lee DK (2016) Transcriptome analysis of spartina pectinata in response to freezing stress. PLoS One 11:e0152294

    Article  CAS  Google Scholar 

  • Nakagahra M, Okuno K, Vaughan D (1997) Rice genetic resources: history, conservation, investigative characterization and use in Japan. Plant Mol Biol 35:69–77

    Article  CAS  PubMed  Google Scholar 

  • Nakamichi N, Kusano M, Fukushima A, Kita M, Ito S, Yamashino T, Saito K, Sakakibara H, Mizuno T (2009) Transcript profiling of an Arabidopsis PSEUDO RESPONSE REGULATOR arrhythmic triple mutant reveals a role for the circadian clock in cold stress response. Plant Cell Physiol 50:447–462

    Article  CAS  PubMed  Google Scholar 

  • Nayyar H, Bains T, Kumar S (2005) Low temperature induced floral abortion in chickpea: relationship to abscisic acid and cryoprotectants in reproductive organs. Environ Exp Bot 53:39–47

    Article  CAS  Google Scholar 

  • Neilson KA, Mariani M, Haynes PA (2011) Quantitative proteomic analysis of cold-responsive proteins in rice. Proteomics 11:1696–1706

    Article  PubMed  Google Scholar 

  • Nishiyama Ito IN, Hayase H, Satake T (1969) Protecting effect of temperature and depth of irrigation water from sterile injury caused by cooling treatment at the meiotic stage of rice plants (in Japanese quoted by Satake, T., l9i6). Proc Crop Sci Soc Jpn 3g:554–555

    Google Scholar 

  • Niu J, Wang J, Hu H, Chen Y, An J, Cai J, Sun R, Sheng Z, Liu X, Lin S (2016) Crosstalk between freezing response and signaling for regulatory transcriptions of MIR475b and its targets bymiR475b promoter in Populus suaveolens. Sci Rep 6:20648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novák A, Boldizsár Á, Ádám É, Kozma-Bognár L, Majláth I, Båga M, Tóth B, Chibbar R, Galiba G (2016) Light-quality and temperature-dependent CBF14 gene expression modulates freezing tolerance in cereals. J Exp Bot 67:1285–1295

    Article  PubMed  CAS  Google Scholar 

  • Novillo F, Alonso JM, Ecker JR, Salinas J (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 101:3985–3990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novillo F, Medina J, Salinas J (2007) Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proc Natl Acad Sci USA 104:21002–21007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogura T, Busch W (2015) From phenotypes to causal sequences: using genome wide association studies to dissect the sequence basis for variation of plant development. Curr Opin Plant Biol 23:98–108

    Article  CAS  PubMed  Google Scholar 

  • Oh CS, Choi YH, Lee SJ, Yoon DB, Moon HP, Ahn SN (2004) Mapping of quantitative trait loci for cold tolerance in weedy rice. Breed Sci 54:373–380

    Article  CAS  Google Scholar 

  • Orvar BL, Sangwan V, Omann F, Dhindsa R (2000) Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant J 23:785–794

    Article  CAS  PubMed  Google Scholar 

  • Ou Y, Liu X, Xie C, Zhang H, Lin Y, Li M, Song B, Liu J (2015) Genome-wide identification of microRNAs and their targets in cold-stored potato tubers by deep sequencing and degradome analysis. Plant Mol Biol Rep 33:584–597

    Article  CAS  Google Scholar 

  • Pan Y, Zhang H, Zhang D, Li J, Xiong H, Yu J, Li J, Rashid MAR, Li G, Ma X, Cao G, Han L, Zichao Li Z (2015) Genetic analysis of cold tolerance at the germination and booting stages in rice by association mapping. PLoS One 10:e0120590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park S, Lee CM, Doherty CJ, Gilmour SJ, Kim Y, Thomashow MF (2015) Regulation of the Arabidopsis CBF regulon by a complex low temperature regulatory network. Plant J 82:193–207

    Article  CAS  PubMed  Google Scholar 

  • Peacock JM (1982) Response and tolerance of sorghum to temperature stress. In: House LR, et al. (Eds.), Sorghum in the Eighties. In: Proceedings of the international symposium on Sorghum, Patancheru, India, November 2–7, 1981. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India, pp 143–159

  • Pearce S, Zhu J, Boldizsár Á, Vágújfalvi A, Burke A, Garland-Campbell K, Galiba G, Dubcovsky J (2013) Large deletions in the CBF gene cluster at the Fr-B2 locus are associated with reduced frost tolerance in wheat. Theor Appl Genet 126:2683–2697

    Article  PubMed  PubMed Central  Google Scholar 

  • Peter R, Eschholz TW, Stamp P, Liedgens M (2006) Swiss maize landraces—early vigour adaptation to cool conditions. Acta Agron Hung 54:329–336

    Article  Google Scholar 

  • Peter R, Eschholz TW, Stamp P, Liedgens M (2009) Swiss Flint maize landraces—a rich pool of variability for early vigour in cool environments. Field Crops Res 110:157–166

    Article  Google Scholar 

  • Pimental C, Davey PA, Juvik JA, Long SP (2005) Gene loci in maize influencing susceptibility to chilling dependent photoinhibition of photosynthesis. Photosyn Res 85:319–326

    Article  CAS  Google Scholar 

  • Pino MT, Skinner JS, Park EJ, Jeknic Z, Hayes PM, Thomashow MF, Chen THH (2007) Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield. Plant Biotech J 5:591–604

    Article  CAS  Google Scholar 

  • Pomeroy MK, Andrews CJ, Stanley KP, Gao JY (1985) Physiological and metabolic responses of winter wheat to prolonged freezing stress. Plant Physiol 78(207–2):10

    Google Scholar 

  • Porter JR, Gawith M (1999) Temperatures and the growth and development of wheat: a review. Eur J Agron 10:23–36

    Article  Google Scholar 

  • Presterl T, Ouzunova M, Schmidt W, Moller EM, Rober FK, Knaak C, Emst K, Westhoff P, Geiger HH (2007) Quantitative trait loci for early plant vigour of maize grown in chilly environments. Theor Appl Genet 114:1059–1070

    Article  PubMed  Google Scholar 

  • Qingcai Z, Keyong Z, Zuwu C, Shuzhen Z (2004) Mapping QTLs controlling seedling cold tolerance in riceusing F2 population. J Hum Agric Univ 30:303–306

    Google Scholar 

  • Ranawake AL, Manangkil OE, Yoshida S, Ishii T, Mori N, Nakamura C (2014) Mapping QTLs for cold tolerance at germination and the early seedling stage in rice (Oryza sativa L.). Biotechnol Biotechnol Equip 28:989–998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reinheimer JL, Barr AR, Eglinton JK (2004) QTL mapping of chromosomal regions conferring reproductive frost tolerance in barley (Hordeum vulgare L.). Theor Appl Genet 109:1267–1274

    Article  CAS  PubMed  Google Scholar 

  • Revilla P, Rodríguez VM, Ordás A, Rincent R, Charcosset A, Giauffret C, Melchinger AE, Schön CC, Bauer Eva, Altmann T, Brunel D, Moreno-González J, Campo L, Ouzunova M, Álvarez A, de Galarreta JIR, Laborde J, Malvar RA (2016) Association mapping for cold tolerance in two large maize inbred panels. BMC Plant Biol 16:127

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez VM, Malvar RA, Butron A, Ordas A, Revilla P (2007) Maize populations as sources of favorable alleles to improve cold-tolerant hybrids. Crop Sci 47:1779–1786

    Article  Google Scholar 

  • Rodriguez VM, Burton A, Rady MOA, Soengas P, Revilla P (2014) Identification of quantitative trait loci involved in the response to cold stress in maize (Zea mays L). Mol Breed:363–371

  • Roy D, Paul A, Roy A, Ghosh R, Ganguly P, Chaudhuri S (2014) Differential acetylation of histone H3 at the regulatory region of OsDREB1b facilitates chromatin remodeling and transcription activation during cold stress. PLoS One 9:e100343

    Article  PubMed  PubMed Central  Google Scholar 

  • Rudi H, Sandve SR, Opseth LM, Larsen A, Rognli OA (2011) Identification of candidate genes important for frost tolerance in Festuca pratensis Huds. by transcriptional profiling. Plant Sci 180:78–85

    Article  CAS  PubMed  Google Scholar 

  • Rymen B, Fiorani F, Kartal F, Vandepoele K, Inzé D, Beemster GTS (2007) Cold nights impair leaf growth and cell cycle progression in maize through transcriptional changes of cell cycle genes. Plant Physiol 143:1429–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito K, Miura K, Nagano K, Hayano-Saito Y, Saito A, Araki H, Kato K (1995) Chromosomal location of quantitative trait loci for cool tolerance at the booting stage in rice variety ‘Norin-PL8’. Breed Sci 45:337–340

    Google Scholar 

  • Saito K, Miura K, Nagano K, Hayano-saito Y, Araki H, Kato A (2001) Identification of two closely linked quantitative trait loci for cold tolerance on chromosome 4 of rice and their association with anther length. Theor Appl Genet 103:862–868

    Article  CAS  Google Scholar 

  • Saito K, Hayano-Saito Y, Maruyama-Funatsuki W, Sato Y, Kato A (2004) Physical mapping and putative candidate gene identification of a quantitative trait locus Ctb1 for cold tolerance at the booting stage of rice. Theor Appl Genet 109:512–522

    Article  CAS  Google Scholar 

  • Saito K, Hayano-Saito Y, Kuroki M, Sato Y (2010) Map-based cloning of the rice cold tolerance gene Ctb1. Plant Sci 179:97–102

    Article  CAS  Google Scholar 

  • Sakata T, Oda S, Tsunaga Y, Shomura H, Kawagishi-Kobayashi M, Aya K, Saeki K, Endo T, Nagano K, Kojima M, Sakakibara H, Watanabe M, Matsuoka M, Higashitani A (2014) Reduction of gibberellin by low temperature disrupts pollen development in rice. Plant Physiol 164:2011–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sallam A, Arbaoui M, El-Esawi M, Abshire N, Martsch R (2016a) Identification and verification of QTL associated with frost tolerance using linkage mapping and GWAS in winter faba bean. Front Plant Sci 7:1098

    Article  PubMed  PubMed Central  Google Scholar 

  • Sallam A, Dhanapal AP, Liu S (2016b) Association mapping of winter hardiness and yield traits in faba bean (Vicia faba L.). Crop Pasture Sci 67:55–68

    Article  Google Scholar 

  • Sandve SR, Kosmala A, Rudi H, Fjellheim S, Rapacz M, Yamada T, Rognli OA (2011) Molecular mechanisms underlying frost tolerance in perennial grasses adapted to cold climates. Plant Sci 180:69–77

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T (1981) Experimental studies on the parental potentiality for breeding cold tolerant rice varieties in Hokkaido, with special reference to tolerance at the booting stage. Bull Hokkaido Perfect Agric Exp Stn 46:51–60

    Google Scholar 

  • Satake T (1969) Research on cold injury of paddy rice plants in Japan. Jpn Agric Res Q 4:5–10

    Google Scholar 

  • Satake T (1976) Sterility-type cold injury in paddy rice plants. Proceedings of the symposium on climate and rice. IRRI, Los Baños, pp 281–300

    Google Scholar 

  • Satake T, Toriyama K (1979) Two extremely cool tolerant varieties. Intl Rice Res Newsl 4:9–10

    Google Scholar 

  • Satoh T, Tezuka K, Kawamoto T, Matsumoto S, Satoh-Nagasawa N, Ueda K, Sakurai K, Watanabe A, Takahashi H, Akagi H (2016) Identification of QTLs controlling low-temperature germination of the East European rice (Oryza sativa L.) variety Maratteli. Euphytica 207:245–254

    Article  Google Scholar 

  • Shen C, Li D, He R, Fang Z, Xia Y, Gao J, Shen H, Cao M (2014) Comparative transcriptome analysis of RNA-seq data for cold-tolerant and cold-sensitive rice genotypes under cold stress. J Plant Biol 57:337–348

    Article  CAS  Google Scholar 

  • Shi H, Chan ZL (2014) AtHAP5A modulates freezing stress resistance in Arabidopsis independent of the CBF pathway. Plant Signal Behav 9:e29109

    Article  PubMed Central  CAS  Google Scholar 

  • Shi H, Ye T, Zhong B, Liu X, Jin R, Chan Z (2014) AtHAP5A modulates freezing stress resistance in Arabidopsis through binding to CCAAT motif of AtXTH21. New Phytol 203:554–567

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Ding Y, Yang S (2015) Cold signal transduction and its interplay with phytohormones during cold acclimation. Plant Cell Physiol 56:7–15

    Article  CAS  PubMed  Google Scholar 

  • Shimono H, Okada M, Kanada E, Arakawa I (2007) Low temperature-induced sterility in rice: evidence for the effects of temperature before panicle initiation. Field Crops Res 101:221–231

    Article  Google Scholar 

  • Shinada H, Iwata N, Sato T, Fujino K (2013) Genetical and morphological characterization of cold tolerance at fertilization stage in rice. Breed Sci 63:197–204

    Article  PubMed  PubMed Central  Google Scholar 

  • Shinada H, Iwata N, Sato T, Fujino K (2014) QTL pyramiding for improving of cold tolerance at fertilization stage in rice. Breed Sci 63:483–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirasawa S, Endo T, Nakagomi K, Yamaguchi M, Nishio T (2012) Delimitation of a QTL region controlling cold tolerance at booting stage of a cultivar, ‘Lijiangxintuanheigu’, in rice, Oryza sativa L. Theor Appl Genet 124:937–946

    Article  CAS  PubMed  Google Scholar 

  • Shu Y, Liu Y, Li W, Song L, Zhang J, Guo C (2016) Genome-wide investigation of microRNAs and their targets in response to freezing stress in Medicago sativa L. based on high-throughput sequencing. GGG 6:755–765

    Google Scholar 

  • Sieber AN, Longin CFH, Leiser WL, Wurschum T (2016) Copy number variation of CBF-A14 at theFr-A2 locus determines frost tolerance in winter durum wheat. Theor Appl Genet 129:1087–1097

    Article  CAS  PubMed  Google Scholar 

  • Sihathep V, Sipaseuth, Phothisane C, Thammavong A, Sengkeo, Phamixay S, Senthonghae M, Chanphengsay M, Linquist B, Fukai S (2001) Response of dry-season irrigated rice to sowing time at four sites in Laos. ACIAR Proc 101:138–146

    Google Scholar 

  • Singh RP, Brennan JP, Farrell T, Williams R, Reinke R, Lewin L et al (2005) Economic analysis of breeding for improved cold tolerance in rice in Australia. Aust Agribus Rev 13:1–9

    Google Scholar 

  • Single WV (1985) Frost injury and the physiology of the wheat plant. J Aust Inst Agric Sci 51:128–134

    Google Scholar 

  • Sinha S, Raxwal VK, Joshi B, Jagannath A, Katiyar-Agarwal S, Goel S, Kumar A, Agarwal M (2015) De novo transcriptome profiling of cold-stressed siliques during pod filling stages in Indian mustard (Brassica juncea L.) Front. Plant Sci 6:932

    Google Scholar 

  • Skinner DZ (2015) Genes upregulated in winter wheat (Triticum aestivum L.) during mild freezing and subsequent thawing suggest sequential activation of multiple response mechanisms. PLoS One 10:e0133166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Skinner JS, von Zitzewitz J, Szucs P, Marquez-Cedillo L, Filichkin T, Amundsen K, Stockinger EJ, Thomashow MF, Chen TH, Hayes PM (2005) Structural, functional, and phylogenetic characterization of a large CBF gene family in barley. Plant Mol Biol 59:533–551

    Article  CAS  PubMed  Google Scholar 

  • Skinner JS, Szucs P, von Zitzewitz J, Marquez-Cedillo L, Filichkin T, Stockinger EJ, Thomashow MF, Chen TH, Hayes PM (2006) Mapping of barley homologs to genes that regulate low temperature tolerance in Arabidopsis. Theor Appl Genet 112:832–842

    Article  CAS  PubMed  Google Scholar 

  • Snape JW, Semikhodskii A, Fish L, Sarma RN, Quarrie SA, Galiba G, Sutka J (1997) Mapping frost resistance loci in wheat and comparative mapping with other cereals. Acta Agron Hung 45:265–270

    Google Scholar 

  • Sofalian O, Mohammadi SA, Aharizad S, Moghaddam M, Shakiba MR (2008) Mapping of QTLs for frost tolerance and heading time using SSR markers in bread wheat. Afr J Biotechnol 920:5260–5264

    Google Scholar 

  • Song L, Jiang L, Chen Y, Shu Y, Bai Y, Guo C (2016) Deep-sequencing transcriptome analysis of field-grown Medicago sativa L. crown buds acclimated to freezing stress. Funct Integr Genom 16:495–511

    Article  CAS  Google Scholar 

  • Spink JH, Kirby EJM, Frost DL, Sylvester-Bradley R, Scott RK, Foulkes MJ, Clare RW, Evans EJ (2000) Agronomic implications of variation in wheat development due to variety, sowing date, site and season. Plant Var Seeds 13:91–108

    Google Scholar 

  • Srinivasan A, Johansen C, Saxena NP (1998) Cold tolerance during early reproductive growth of chickpea (Cicer arietinum L.): characterization of stress and genetic variation in pod set. Field Crops Res 57:181–193

    Article  Google Scholar 

  • Sthapit BR (1987) Chhomrong a promising cold tolerant traditional rice variety for rainfed wetlands in western hills of Nepal. IRRN 12:4

    Google Scholar 

  • Sthapit BR, Witcombe JR (1998) Inheritance of tolerance to chilling stress in rice during germination and plumule greening. Crop Sci 38:660–665

    Article  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcription activator that binds to the C repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stockinger EJ, Skinner JS, Gardner KG, Francia E, Pecchioni N (2007) Expression levels of barley Cbf genes at the Frost resistance-H2 locus are dependent upon alleles at Fr-H1 and Fr-H2. Plant J 51:308–321

    Article  CAS  PubMed  Google Scholar 

  • Strigens A, Freitag NM, Gilbert X, Grieder C, Riedelsheimer C, Schrag TA, Messmer R (2013) Association mapping for chilling tolerance in elite flint and dent maize inbred lines evaluated in growth chamber and field experiments. Plant Cell Environ 36:1871–1887

    Article  CAS  PubMed  Google Scholar 

  • Suh JP, Jeung JU, Lee JI, Choi YH, Yea JD, Virk PS, Mackill DJ, Jena KK (2010) Identification and analysis of QTLs controlling cold tolerance at the reproductive stage and validation of effective QTLs in cold-tolerance genotypes of rice (Oryza sativa L.). Theor Appl Genet 120:985–995

    Article  CAS  PubMed  Google Scholar 

  • Suh JP, Lee CK, Lee JH, Kim JJ, Kim SM, Cho YC, Park SH, Shin JC, Kim YG, Jena KK (2012) Identification of quantitative trait loci for seedling cold tolerance using RILs derived from a cross between japonica and tropical japonica rice cultivars. Euphytica 184:101–108

    Article  Google Scholar 

  • Sutka J (1994) Genetic control of frost tolerance in wheat (Triticum aestivum L.). Euphytica 77:277–282

    Article  Google Scholar 

  • Sutka J (2001) Genes for frost resistance in wheat. Euphytica 119:167–172

    Article  CAS  Google Scholar 

  • Sutka J, Snape JW (1989) Location of a gene for frost resistance on chromosome 5A of wheat. Euphytica 42:41–44

    Article  Google Scholar 

  • Sutton F, Chen DG, Ge X, Kenefick D (2009) Cbf genes of the Fr-A2 allele are differentially regulated between long-term cold acclimated crown tissue of freeze-resistant and—susceptible, winter wheat mutant lines. BMC Plant Biol 9:34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takanashi J, Maruyama S, Kabaki N, Tajima K (1987) Temperature dependence of protein synthesis by cell-free system constructed with polysomes from rice radicle. Jpn J Crop Sci 56:44–50

    Article  CAS  Google Scholar 

  • Takeuchi Y, Hayasaka H, Chiba B, Tanaka I, Shimono T, Yamagishi M, Nagano K, Sasaki T, Yano M (2001) Mapping quantitative trait loci controlling cool-temperature tolerance at booting stage in temperate japonica rice. Breed Sci 51:191–197

    Article  CAS  Google Scholar 

  • Tamura K, Hara-Nishimura I (2014) Functional insights of nucleocytoplasmic transport in plants. Front Plant Sci 5:118

    Article  PubMed  PubMed Central  Google Scholar 

  • Tayeh N, Bahrman N, Sellier H, Bluteau A, Blassiau C, Fourment J, Bellec A, Debelle F, Lejeune- Henaut I, Delbreil B (2013) A tandem array of CBF/DREB1 genes is located in a major freezing tolerance QTL region on Medicago truncatula chromosome 6. BMC Genom 14:814

    Article  CAS  Google Scholar 

  • Teutonico RA, Yandell B, Satagopan JM, Ferreira ME, Palta JP (1995) Genetic analysis and mapping of genes controlling freezing tolerance in oilseed Brassica. Mol Breed 1:329–339

    Article  CAS  Google Scholar 

  • Thakur P, Kumar S, Malik JA, Berger JD (2010) Cold stress effects on reproductive development in grain crops: an overview. Environ Exp Bot 67:429–443

    Article  CAS  Google Scholar 

  • Thiebaut F, Rojas CA, Almeida KL, Grativol C, Domiciano GC, Lamb CRC, Engler JA, Hemerly AS, Ferreira PCG (2012) Regulation of miR319 during cold stress in sugarcane. Plant Cell Environ 35:502–512

    Article  CAS  PubMed  Google Scholar 

  • Thomashow MF (1998) Role of cold-responsive genes in plant freezing tolerance. Plant Physiol 118:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  CAS  PubMed  Google Scholar 

  • Tian F, Zhu ZF, Fu YC, Wang XK, Sun CQ (2006) Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (Oryza sativa L.) background and characterization of introgressed segments associated with yield-related traits. Theor Appl Genet 112:570–580

    Article  CAS  PubMed  Google Scholar 

  • Tian DQ, Pan XY, Yu YM, Wang WY, Zhang F, Ge YY, Shen XL, Shen FQ, Liu XJ (2013a) De novo characterization of the Anthurium transcriptome and analysis of its digital gene expression under cold stress. BMC Genom 14:827

    Article  CAS  Google Scholar 

  • Tian S, Mao X, Zhang H, Chen S, Zhai C, Yang S, Jing R (2013b) Cloning and characterization of TaSnRK2.3, a novel SnRK2 gene in common wheat. J Exp Bot 64:2063–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • To KT, Nakaminami K, Kim JM, Morosawa T, Ishida J, Tanaka M, Yokoyama S, Shinozaki K, Seki M (2011) Arabidopsis HDA6 is required for freezing tolerance. Biochem Biophys Res Commun 406:414–419

    Article  CAS  PubMed  Google Scholar 

  • Tondelli A, Francia E, Barabaschi D, Aprile A, Skinner JS, Stockinger EJ, Stanca AM, Pecchioni N (2006) Mapping regulatory genes as candidates for cold and drought stress tolerance in barley. Theor Appl Genet 112:445–454

    Article  CAS  PubMed  Google Scholar 

  • Toth B, Galiba G, Feher E, Sutka J, Snape JW (2003) Mapping genes affecting flowering time and frost resistance on chromosome 5B of wheat. Theor Appl Genet 107:509–514

    Article  CAS  PubMed  Google Scholar 

  • Truco MJ, Randall LB, Bloom AJ, Clair DAS (2000) Detection of QTLs associated with shoot wilting and root ammonium uptake under chilling temperatures in an interspecific backcross population from Lycopersicon esculentum × L. hirsutum. Theor Appl Genet 101:1082–1092

    Article  CAS  Google Scholar 

  • Tsuda K, Tsvetanov S, Takumi S, Mori N, Atanassov A, Nakamura C (2000) New members of a cold-responsive group-3 Lea/Rab-related Cor gene family from common wheat (Triticum aestivum L.). Genes Genet Syst 75:179–188

    Article  CAS  PubMed  Google Scholar 

  • Tsvetanov S, Ohno R, Tsuda K, Takumi S, Mori N, Atanassov A, Nakamura C (2000) A cold-responsive wheat (Triticum aestivum L.) gene wcor14 identified in a winter-hardy cultivar ‘Mironovska 808’. Genes Genet Syst 75:49–57

    Article  CAS  PubMed  Google Scholar 

  • Tumino G, Voorrips RE, Rizza F, Badeck FW, Morcia C, Ghizzoni R, Germeier CU, Paulo MJ, Terzi V, Smulders MJM (2016) Population structure and genome-wide association analysis for frost tolerance in oat using continuous SNP array signal intensity ratios. Theor Appl Genet 129:1711–1724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulziibat B, Ohta H, Fukushima A, Shirasawa S, Kitashiba H, Nishio T (2016) Examination of candidates for the gene of cold tolerance at the booting stage in a delimited QTL region in rice cultivar ‘Lijiangxintuanheigu’. Euphytica 211:331–341

    Article  CAS  Google Scholar 

  • Vágújfalvi A, Crosatti C, Galiba G, Dubcovsky J, Cattivelli L (2000) Two loci on wheat chromosome 5A regulate the differential cold-dependent expression of the cor14b gene in frost-tolerant and frost-sensitive genotypes. Mol Genet Genomics 263:194–200

    Article  Google Scholar 

  • Vágújfalvi A, Galiba G, Cattivelli L, Dubcovsky J (2003) The coldregulated transcriptional activator Cbf3 is linked to the frost tolerance locus Fr-A2 on wheat chromosome 5A. Mol Genet Genomics 269:60–67

    PubMed  PubMed Central  Google Scholar 

  • Vágújfalvi A, Aprile A, Miller A, Dubcovsky J, Delugu G, Galiba G, Cattivelli L (2005) The expression of several Cbf genes at the Fr- A2 locus is linked to frost resistance in wheat. Mol Genet Genomics 274:506–514

    Article  PubMed  CAS  Google Scholar 

  • Vallejos CE, Tanksley SD (1983) Segregation of isozyme markers and cold tolerance in an interspecific backcross of tomato. Theor Appl Genet 66:241–247

    CAS  PubMed  Google Scholar 

  • Varshney RK, Ribaut JM, Buckler ES, Tuberosa R, Rafalski JA, Langridge P (2012) Can genomics boost productivity of orphan crops? Nat Biotechnol 30:1172–1176

    Article  CAS  PubMed  Google Scholar 

  • Vítámvás P, Prásil IT (2008) WCS120 protein family and frost tolerance during cold acclimation, deacclimation and reacclimation of winter wheat. Plant Physiol Biochem 46:970–976

    Article  PubMed  CAS  Google Scholar 

  • Wainaina CM, Inukai Y, Masinde PW, Ateka EM, Murage H, Kano-Nakata M, Nakajima Y, Terashima T, Mizukami Y, Nakamura M, Nonoyama T, Saka N, Asanuma S, Yamauchi A, Kitano H, Kimani J, Makihara D (2015) Evaluation of cold tolerance in NERICAs compared with Japanese standard rice varieties at the reproductive stage. J Agron Crop Sci 201:461–472

    Article  CAS  Google Scholar 

  • Wang Z, Wang F, Zhou R, Wang J, Zhang H (2011) Identification of quantitative trait loci for cold tolerance during the germination and seedling stages in rice (Oryza sativa L.). Euphytica 181:405–413

    Article  Google Scholar 

  • Wang ST, Sun XL, Hoshino Y, Yu Y, Jia B, Sun ZW, Duan XB, Zhu YM (2014) MicroRNA319 positively regulates cold tolerance by targeting OsPCF6 and OsTCP21 in rice (Oryza sativa L.). PLoS One 9:e91357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Washburn JD, Murray SC, Burson BL, Klein RR, Jessup RW (2013) Targeted mapping of quantitative trait locus regions for rhizomatousness in chromosome SBI-01 and analysis of overwintering in a Sorghum bicolor 3 S. propinquum population. Mol Breed 31:153–162

    Article  PubMed  Google Scholar 

  • Winfield MO, Lu C, Wilson ID, Coghill JA, Edwards KJ (2010) Plant responses to cold: transcriptome analysis of wheat. Plant Biotechnol J 8:749–771

    Article  CAS  PubMed  Google Scholar 

  • Wooten DR, Livingston DP III, Holland JB, Marshall DS, Murphy JP (2008) Quantitative trait loci and epistasis for crown freezing tolerance in the ‘Kanota’ × ‘Ogle’ hexaploid oat mapping population. Crop Sci 48:149

    Article  Google Scholar 

  • Xiao N, Huang WN, Zhang XX, Gao Y, Li AH, Dai Y, Yu L, Liu GQ, Pan CH, Li YH, Dai ZY, Chen JM (2014) Fine mapping of qRC10-2, a quantitative trait locus for cold tolerance of rice roots at seedling and mature stages. PLoS One 9:e96046

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao N, Huang W, Li A, Gao Y, Li Y, Pan C, Ji H, Zhang X, Dai Y, Dai Z (2015) Fine mapping of the qLOP2 and qPSR2 -1loci associated with chilling stress tolerance of wild rice seedlings. Theor Appl Genet 128:173–185

    Article  CAS  PubMed  Google Scholar 

  • Xin Z, Browse J (1998) Eskimo1 mutants of Arabidopsis are constitutively freezing-tolerant. Proc Natl Acad Sci USA 95:7799–7804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin Z, Browse J (2000) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ 23:893–902

    Article  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14(Suppl):s165–s183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong Y, Fei S, Arora R, Brummer E, Barker R, Jung G, Warnke S (2007) Identification of quantitative trait loci controlling winter hardiness in an annual × perennial ryegrass interspecific hybrid population. Mol Breed 19:125–136

    Article  Google Scholar 

  • Xu LM, Zhou L, Zeng W, Wang FM, Zhang HL, Shen SQ, Li ZC (2008) Identification and mapping of quantitative trait loci for cold tolerance at the booting stage in a japonica rice near-isogenic line. Plant Sci 174:340–347

    Article  CAS  Google Scholar 

  • Xu J, Li Y, Sun J, Du L, Zhang Y, Yu Q, Liu X (2013) Comparative physiological and proteomic response to abrupt low temperature stress between two winter wheat cultivars differing in low temperature tolerance. Plant Biol (Stuttg) 15:292–303

    Article  CAS  Google Scholar 

  • Yadav SK (2010) Cold stress tolerance mechanisms in plants. A review. Agron Sustain Dev 30:515–527

    Article  CAS  Google Scholar 

  • Yang T, Chaudhuri S, Yang L, Du L, Poovaiah BW (2010) A calcium/calmodulin-regulated member of the receptor-like kinase family confers cold tolerance in plants. J Biol Chem 285:7119–7126

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Huang D, Tang W, Zheng Y, Liang K, Cutler AJ, Wu W (2013a) Mapping of quantitative trait loci underlying cold tolerance in rice seedlings via high-throughput sequencing of pooled extremes. PLoS One 8:e68433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Li D, Mao D, Liu X, Ji C, Li X, Zhao X, Cheng Z, Chen C, Zhu L (2013b) Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). Plant Cell Environ 36:2207–2218

    Article  CAS  PubMed  Google Scholar 

  • Yang QS, Gao J, He WD, Dou TX, Ding LJ, Wu JH, Li CY, Wu JH, Li CY, Peng XX, Zhang S, Yi GJ (2015) Comparative transcriptomics analysis reveals difference of key gene expression between banana and plantain in response to cold stress. BMC Genom 16:446

    Article  CAS  Google Scholar 

  • Yang T, Zhang S, Zhao Z, Liu Q, Huang Z, Mao X, Dong J, Wang X, Zhang G, Liu B (2016) Identification and pyramiding of QTLs for cold tolerance at the bud bursting and the seedling stages by use of single segment substitution lines in rice (Oryza sativa L.). Mol Breed 36:96

    Article  CAS  Google Scholar 

  • Ye C, Fukai S, Godwin I, Reinke RB, Snell PB, Schiller J, Basnayake J (2009) Cold tolerance in rice varieties at different growth stages. Crop Pasture Sci 60:328–338

    Article  Google Scholar 

  • Ye C, Fukai S, Godwin DI, Koh H, Reinke R, Zhou Y, Lambrides C, Jiang W, Snell P, Redoña E (2010) A QTL controlling low temperature induced spikelet sterility at booting stage in rice. Euphytica 176:291–301

    Article  Google Scholar 

  • Yi SY, Kim JH, Joung YH, Lee S, Kim WT, Yu SH, Choi D (2004) The pepper transcription factor CaPF1 confers pathogen and freezing tolerance in Arabidopsis. Plant Physiol 136:2862–2874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokota H, Iehisa JCM, Shimosaka E, Takumi S (2015) Line differences in Cor/Lea and fructan biosynthesis-related gene transcript accumulation are related to distinct freezing tolerance levels in synthetic wheat hexaploids. J Plant Physiol 176:78–88

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S (1981) Pp. 1–63 in fundamentals of rice crop science. International Rice Research Institute, Los Baños

    Google Scholar 

  • Yoshida R, Kanno A, Sato T, Kameya T (1996) Cool temperature- induced chlorosis in rice plants. Plant Physiol 110:997–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu X, Hui Peng Y, Hua Zhang M, Jun Shao Y, Ai SuW, Cheng Tang Z (2006) Water relations and an expression analysis of plasma membrane intrinsic proteins in sensitive and tolerant rice during chilling and recovery. Cell Res 16:599–608

    Article  PubMed  CAS  Google Scholar 

  • Zhan X, Zhu JK, Lang Z (2015) Increasing freezing tolerance: kinase regulation of ICE1. Dev Cell 32:257–258

    Article  CAS  PubMed  Google Scholar 

  • Zhang GQ, Zeng RZ, Zhang ZM, Ding XH, Li WT, Liu GF, He FH, Tulukdar A, Huang CF, Xi ZY, Qin LJ, Shi JQ, Zhao FM, Feng MJ, Shan ZL, Chen L, Guo XQ, Zhu HT, Lu YG (2004) The construction of a library of single segment substitution lines in rice (Oryza sativa L.). Rice Genet Newsl 121:85–87

    Google Scholar 

  • Zhang ZH, Su L, Li W, Chen W, Zhu YG (2005) A major QTL conferring cold tolerance at the early seedling stage using recombinant inbred lines of rice (Oryza sativa L.). Plant Sci 168:527–534

    Article  CAS  Google Scholar 

  • Zhang J, Xu Y, Huan Q, Chong K (2009) Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genom 10:449

    Article  CAS  Google Scholar 

  • Zhang F, Huang L, Wang W, Zhao X, Zhu L, Fu B, Li Z (2012a) Genome-wide gene expression profiling of introgressed indica rice alleles associated with seedling cold tolerance improvement in a japonica rice background. BMC Genom 13:461

    Article  CAS  Google Scholar 

  • Zhang T, Zhao X, Wang W, Pan Y, Huang L, Liu X, Zong Y, Zhu L, Yang D, Fu B (2012b) Comparative transcriptome profiling of chilling stress responsiveness in two contrasting rice genotypes. PLoS One 7:e43274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Zheng J, Liu B, Peng S, Leung H, Zhao J, Wang X, Yang T, Huang Z (2014a) Identification of QTLs for cold tolerance at seedling stage in rice (Oryza sativa L.) using two distinct methods of cold treatment. Euphytica 195:95–104

    Article  CAS  Google Scholar 

  • Zhang Y, Zhu X, Chen X, Song C, Zou Z, Wang Y, Wang M, Fang W, Li X (2014b) Identification and characterization of cold-responsive microRNAs in tea plant (Camellia sinensis) and their targets using high-throughput sequencing and degradome analysis. BMC Plant Biol 14:271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Chen Q, Wang S, Hong Y, Wang Z (2014c) Rice and cold stress: methods for its evaluation and summary of cold tolerance-related quantitative trait loci. Rice (N Y) 7(1):24

    Google Scholar 

  • Zhang S, Wang Y, Li K, Zou Y, Chen L, Li X (2015) Identification of cold-responsive miRNAs and their target genes in nitrogen-fixing nodules of soybean. Int J Mol Sci 15:13596–13614

    Article  CAS  Google Scholar 

  • Zhao Y, Gowda M, Würschum T, Longin CF, Korzun V, Kollers S, Schachschneider R, Zeng J, Fernando R, Dubcovsky J, Reif JC (2013) Dissecting the genetic architecture of frost tolerance in Central European winter wheat. J Exp Bot 64:4453–4460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao C, Zhaobo Lang Z, Zhu JK (2015a) Cold responsive gene transcription becomes more complex. Trends Plant Sci 20:466–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Zhang S, Yang T, Zeng Z, Huang Z, Liu Q, Wang X, Leach J, Leung H, Liu B (2015b) Global transcriptional profiling of a cold-tolerant rice variety under moderate cold stress reveals different cold stress response mechanisms. Physiol Plant 154:381–394

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Zhang Z, Xie S, Si T, Li Y, Zhu JK (2016) Mutational evidence for the critical role of CBF genes in cold acclimation in arabidopsis. Plant Physiol 171:2744–2759

    CAS  PubMed  Google Scholar 

  • Zheng B, Chapman SC, Christopher JT, Frederiks TM, Chenu K (2015a) Frost trends and their estimated impact on yield in the Australian wheatbelt. J Exp Bot 66:3611–3623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng C, Zhao L, Wang Y, Shen J, Zhang Y, Jia S, Li Y, Ding Z (2015b) Integrated RNA-Seq and sRNA-Seq analysis identifies chilling and freezing responsive key molecular players and pathways in tea plant (Camellia sinensis). PLoS One 10:e0125031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou QY, Tian AG, Zou HF, Xie ZM, Lei G, Huang J, Wang CM, Wang HW, Zhang JS, Chen SY (2008) Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J 6:486–503

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Zeng Y, Zheng W, Tang B, Yang S, Zhang H, Li J, Li Z (2010) Fine mapping a QTL qCTB7 for cold tolerance at the booting stage on rice chromosome 7 using near-isogenic line. Theor Appl Genet 121:895–905

    Article  CAS  PubMed  Google Scholar 

  • Zhou MQ, Shen C, Wu LH, Tang KX, Lin J (2011) CBF-dependent signaling pathway: a key responder to low temperature stress in plants. Crit Rev Biotechnol 31:186–192

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Zeng Y, Hu G, Pan Y, Yang S, You A, Zhang H, Li J, Li Z (2012) Characterization and identification of cold tolerant near-isogenic lines in rice. Breed Sci 62(2):196–201

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Shi H, Lee BH, Damsz B, Cheng S, Stirm V, Zhu JK, Hasegawa PM, Bressan RA (2004) An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proc Natl Acad Sci USA 101:9873–9878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Verslues PE, Zheng X, Lee BH, Zhan X, Manabe Y, Sokolchik I, Zhu Y, Dong CH, Zhu JK, Hasegawa PM, Bressan RA (2005) HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. Proc Natl Acad Sci USA 102:9966–9971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Dong CH, Zhu JK (2007) Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Curr Opin Plant Biol 10:290–295

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Pearce S, Burke A, See DR, Skinner DZ, Dubcovsky J, Garland- Campbell K (2014) Copy number and haplotype variation at the VRN-A1 and central FR-A2 loci are associated with frost tolerance in hexaploid wheat. Theor Appl Genet 127:1183–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Chen K, Mi X, Chen T, Ali J, Ye G, Xu J, Li Z (2015) Identification and fine mapping of a stably expressed QTL for cold tolerance at the booting stage using an interconnected breeding population in rice. PLoS One 10:e0145704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the Indian Council of Agricultural Research (ICAR), New Delhi, India. We also apologize that other LT related references could not be cited due to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Uday Chand Jha or Abhishek Bohra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. No financial help is taken for writing this manuscript.

Additional information

Communicated by N Stewart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, U.C., Bohra, A. & Jha, R. Breeding approaches and genomics technologies to increase crop yield under low-temperature stress. Plant Cell Rep 36, 1–35 (2017). https://doi.org/10.1007/s00299-016-2073-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-016-2073-0

Keywords

Navigation