Skip to main content

Advertisement

Log in

Overexpression of PSK1, a SKP1-like gene homologue, from Paeonia suffruticosa, confers salinity tolerance in Arabidopsis

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Our study is the first to demonstrate that PSK1 , a SKP1 -like gene homologue, is involved in salinity tolerance. Our functional characterization of PSK1 provides new insights into tree peony development.

Abstract

A homologous gene of S-phase kinase-associated protein1 (SKP1) was cloned from tree peony (Paeonia suffruticosa) and denoted as PSK1. The 462-bp open reading frame of PSK1 was predicted to encode a protein comprising 153 amino acids, with a molecular mass of 17 kDa. The full-length gene was 1,634 bp long and included a large 904-bp intron. PSK1 transcription was detected in all tissues, with the highest level observed in sepals, followed by leaves. Under salinity stress, overexpression of PSK1 in Arabidopsis resulted in increased germination percentages, cotyledon greening, and fresh weights relative to wild-type plants. Furthermore, transgenic Arabidopsis lines containing 35S::PSK1 displayed increased expression of genes that would be essential for reproduction and growth under salinity stress: ASK1, LEAFY, FT, and CO involved in flower development and flowering time as well as P5CS, RAB18, DREB, and SOD1-3 contributing to salinity tolerance. Our functional characterization of PSK1 adds to global knowledge of the multiple functions of previously explored SKP1-like genes in plants and sheds light on the molecular mechanism underlying its role in salinity tolerance. Our findings also provide information on the function and molecular mechanism of PSK1 in tree peony flower development, thereby revealing a theoretical basis for regulation of flowering and conferral of salinity tolerance in tree peony.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CaMV:

Cauliflower mosaic virus

DREB:

Dehydration-responsive element-binding protein

MDA:

Malondialdehyde

MS:

Murashige and Skoog

ORF:

Open reading frame

P5CS:

Δ1-Pyrroline-5-carboxylate synthase

qPCR:

Quantitative real-time PCR

RAB18:

Ras-related protein

RACE:

Rapid amplification of cDNA ends

ROS:

Reactive oxygen species

RT-PCR:

Reverse transcription-PCR

SOD:

Superoxide dismutase

WT:

Wild type

CO :

CONSTANS

FT :

Flowering locus T

References

  • Bailey RW (1958) The reaction of pentoses with anthrone. Biochem J 68:669–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chai LJ, Biswas MK, Ge XX, Deng XX (2010) Isolation, characterization, and expression analysis of an SKP1-like gene from ‘Shatian’ Pummelo (Citrus grandis Osbeck). Plant Mol Biol Rep 28:569–577

    Article  CAS  Google Scholar 

  • Chen ZL, Yu Y, Liu LN, Xia GX (2007) Isolation, characterization and functional analysis of a cdc48 homologue from tobacco BY-2 cells. Progress Nat Sci 17:156–162

    Article  CAS  Google Scholar 

  • Cheng MC, Liao PM, Kuo WW, Lin TP (2013) The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol 162(3):1566–1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou KC, Shen HB (2010) Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS One 5:e11335

    Article  PubMed  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  PubMed  Google Scholar 

  • Dezfulian MH, Soulliere DM, Dhaliwal RK, Sareen M, Crosby WL (2012) The SKP1-like gene family of Arabidopsis exhibits a high degree of differential gene expression and gene product interaction during development. PLoS One 7:e50984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dieterle M, Zhou YC, Schafer E, Funk M, Kretsch T (2001) EID1, an F-box protein involved in phytochrome A-specific light signaling. Genes Dev 15:939–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du H, Wu J, Jia KX, Zeng QY, Bhuiyad MW, Su S, Shu QY, Ren HX, Liu ZA, Wang LS (2015) Methylation mediated by an anthocyanin O-methyltransferase, is involved in purple flower coloration in Paeonia. J Exp Bot 66:6563–6577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray WM, del Pozo JC, Walker L, Hobbie L, Risseeuw E, Banks T, Crosby WL, Yang M, Ma H, Estelle M (1999) Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev 13:1678–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gusti A, Baumberger N, Nowack M, Pusch S, Eisler H, Potuschak T, De Veylder L, Schnittger A, Genschik P (2009) The Arabidopsis thaliana F-box protein FBL17 is essential for progression through the second mitosis during pollen development. PLoS One 4:e4780

    Article  PubMed  PubMed Central  Google Scholar 

  • Han XY, Wang LS, Liu ZA, De Riek J, Shu QY (2008) Characterization of sequence-related amplified polymorphism marker analysis of tree peony bud sports. Sci Horti (Amsterdam) 115:261–267

    Article  CAS  Google Scholar 

  • Hellmann H, Estelle M (2002) Plant development: regulation by protein degradation. Science 297:793–797

    Article  CAS  PubMed  Google Scholar 

  • Henricson A, Forslund K, Sonnhamme E (2010) Orthology confers intron position conservation. BMC Genom 11:412

    Article  Google Scholar 

  • Hong MJ, Kim DY, Seo YW (2013) SKP1-like-related genes interact with various F-box proteins and may form SCF complexes with Cullin-F-box proteins in wheat. Mol Biol Rep 40:969–981

    Article  CAS  PubMed  Google Scholar 

  • Imaizumi T, Schultz TF, Harmon FG, Ho LA, Kay SA (2005) FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309:293–297

    Article  CAS  PubMed  Google Scholar 

  • Kahloul S, HajSalahElBeji I, Boulaflous A, Ferchichi A, Kong H, Mouzeyar S, Bouzidi MF (2013) Structural, expression and interaction analysis of rice SKP1-like genes. DNA Res 20:67–78

    Article  CAS  PubMed  Google Scholar 

  • Kim WY, Ali Z, Park HJ, Park SJ, Cha JY, Perez-Hormaeche J, Quintero FJ, Shin G, Kim MR, Qiang Z, Ning L, Park HC, Lee SY, Bressan RA, Pardo JM, Bohnert HJ, Yun DJ (2013) Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nat Commun 4:1352

    Article  PubMed  Google Scholar 

  • Kong H, Leebens-Mack J, Ni W, dePamphilis CW, Ma H (2004) Highly heterogeneous rates of evolution in the SKP1 gene family in plants and animals: functional and evolutionary implications. Mol Biol Evol 21:117–128

    Article  CAS  PubMed  Google Scholar 

  • Kong H, Landherr LL, Frohlich MW, Leebens-Mack J, Ma H, de Pamphilis CW (2007) Patterns of gene duplication in the plant SKP1 gene family in angiosperms: evidence for multiple mechanisms of rapid gene birth. Plant J 50:873–885

    Article  CAS  PubMed  Google Scholar 

  • Kramer GF, Norman HA, Krizek DT, Mirecki RM (1991) Influence of UV-B radiation on polyamines, lipid peroxidation and membrane lipids in cucumber. Phytochem 30:2101–2108

    Article  CAS  Google Scholar 

  • Kuroda H, Yanagawa Y, Takahashi N, Horii Y, Matsui M (2012) A comprehensive analysis of interaction and localization of Arabidopsis SKP1-like (ASK) and F-box (FBX) proteins. PLoS One 7e:50009

  • Letunic I, Goodstadt L, Dickens NJ, Doerks T, Schultz J, Mott R, Ciccarelli F, Copley RR, Ponting CP, Bork P (2002) Recent improvements to the SMART domain-based sequence annotation resource. Nucleic Acids Res 30:D142–D144

    Article  Google Scholar 

  • Li JJ (1999) Chinese Tree Peony and Herbaceous Peony. Chinese Forestry Press, Beijing, p 17

    Google Scholar 

  • Li C, Liang Y, Chen C, Li J, Xu Y, Xu Z, Ma H, Chong K (2006) Cloning and expression analysis of TSK1, a wheat SKP1 homologue, and functional comparison with Arabidopsis ASK1 in male meiosis and auxin signaling. Funct Plant Biol 33:381–390

    Article  CAS  Google Scholar 

  • Li ZX, Qin GW, He JH, Cao XY (2010) Comparative analysis of fatty acid composition in seed kernel and coat of Paeonia rockii seeds. Seed 29:34–36

    CAS  Google Scholar 

  • Li C, Liu Z, Zhang Q, Wang R, Xiao L, Ma H, Chong K, Xu Y (2012) SKP1 is involved in abscisic acid signaling to regulate seed germination, stomatal opening and root growth in Arabidopsis thaliana. Plant Cell Environ 35:952–965

    Article  CAS  PubMed  Google Scholar 

  • Li SS, Yuan RY, Chen LG, Wang LS, Hao XH, Wang LJ, Zheng XC, Du H (2014) Systematic qualitative and quantitative assessment of fatty acids in the seeds of 60 tree peony (Paeonia section Moutan DC.) cultivars by GC-MS. Food Chem 173:133–140

    Article  PubMed  Google Scholar 

  • Li P, Miao HX, Ma YW, Wang L, Hu GB, Ye ZX, Zhao JT, Qin YH (2015) CrWSKP1, a SKP1-like gene, is Involved in the self-Incompatibility reaction of “Wuzishatangju” (Citrus reticulata Blanco). Int J Mol Sci 16:21695–21710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Ni W, Griffith ME, Huang Z, Chang C, Peng W, Ma H, Xie D (2004) The ASK1 and ASK2 genes are essential for Arabidopsis early development. Plant Cell 16:5–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Marrocco K, Lecureuil A, Nicolas P, Guerche P (2003) The Arabidopsis SKP1-like genes present a spectrum of expression profiles. Plant Mol Biol 527:15–727

    Google Scholar 

  • Matsumoto D, Yamane H, Abe K, Tao R (2012) Identification of a Skp1-like protein interaction with SFB, the pollen S determinant of the gametophytic self-incompatibility in Prunus. Plant Physiol 159:1252–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGinnis KM, Thomas SG, Soule JD, Strader LC, Zale JM, Sun TP, Steber CM (2003) The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. Plant Cell 15:1120–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nayak S, Santiago FE, Jin H, Lin D, Schedl T, Kipreos ET (2002) The Caenorhabditis elegans Skp1-related gene family: diverse functions in cell proliferation, morphogenesis, and meiosis. Curr Biol 12:277–287

    Article  CAS  PubMed  Google Scholar 

  • Niu CF, Wei W, Zhou QY, Tian AG, Hao YJ, Zhang WK, Ma B, Lin Q, Zhang ZB, Zhang JS, Chen SY (2012) Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ 35:1156–1170

    Article  CAS  PubMed  Google Scholar 

  • Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer EL, Eddy SR, Bateman A, Finn RD (2012) The Pfam protein families database. Nucleic Acids Res 40:D290–D301

    Article  CAS  PubMed  Google Scholar 

  • Rogers SW, Well R, Rechsteiner M (1986) Amino acid sequences act as quantitative enchancers of gene expression in transgenic tobacco and potato plants. Plant Mol Biol 37:885–897

    Google Scholar 

  • Schulman BA, Carrano AC, Jeffrey PD, Bowen Z, Kinnucan ER, Finnin MS, Elledge SJ, Harper JW, Pagano M, Pavletich NP (2000) Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex. Nature 408:381–386

    Article  CAS  PubMed  Google Scholar 

  • Shan DP, Huang JG, Yang YT, Guo YH, Wu CA, Yang GD, Gao Z, Zheng CC (2007) Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gibberellic acid. New Phytol 176:70–81

    Article  CAS  PubMed  Google Scholar 

  • Shu QY, Wischnitzki E, Liu ZA, Ren HX, Han XY, Hao Q, Gao FF, Xu SX, Wang LS (2009) Analysis and functional annotation of expressed sequence tags for Tree Peony for the understanding of molecular mechanism controlling flower bud development. Physiol Plant 135:436–449

    Article  CAS  PubMed  Google Scholar 

  • Somers DE, Schultz TF, Milnamow M, Kay SA (2000) ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 101:319–329

    Article  CAS  PubMed  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  CAS  PubMed  Google Scholar 

  • Takahashi N, Kuroda H, Kuromori T, Hirayama T, Seki M, Shinozaki K, Shimada H, Matsui M (2004) Expression and interaction analysis of Arabidopsis Skp1-related genes. Plant Cell Physiol 45:83–91

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4.1: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vierstra RD (2009) The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol 10:385–397

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Ni W, Ge X, Zhang J, Ma H, Cao KM (2006) Proteomic identification of potential target proteins regulated by an ASK1-mediated proteolysis pathway. Cell Res 16:489–498

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Tao T, Han Y, Chen X, Fan Z, Li D, Yu J, Han C (2013) Nonstructural protein P7–2 encoded by Rice black-streaked dwarf virus interacts with SKP1, a core subunit of SCF ubiquitin ligase. Virol J 10(1):325

    Article  PubMed  PubMed Central  Google Scholar 

  • Winkler AA, Goedegebure RH, Zonneveld BJ, Steensma HY, Hooykaas PJ (2000) Isolation and partial characterization of the Kluyveromyces lactis homologue of SKP1. Curr Genet 38:8–16

    Article  CAS  PubMed  Google Scholar 

  • Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091–1094

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Hu Y, Lodhi M, McCombie WR, Ma H (1999) The Arabidopsis SKP1-LIKE1 gene is essential for male meiosis and may control homologue separation. Proc Natl Acad Sci USA 96:11416–11421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Q, Chen ZZ, Zhou XF, Yin HB, Li X, Xin XF, Hong XH, Zhu JK, Gong Z (2009) Overexpression of SOS (Salt Overly Sensitive) genes increases the salt tolerance in transgenic Arabidopsis. Mol Plant 2:22–31

    Article  CAS  PubMed  Google Scholar 

  • Yoshida A, Suzuki N, Nakano Y, Kawada M, Oho T, Koga T (2003) Development of a 5′ nuclease-based real-time PCR assay for quantitative detection of cariogenic dental pathogens Streptococcus mutans and Streptococcus sobrinus. J Clin Microbiol 41:4438–4441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YQ, Wang CP, Lin QF, Gao FH, Ma Y, Zhang M, Lin YH, Ma QH, Hua XJ (2015) Genome-wide analysis of phylogeny, expression profile and sub-cellular localization of SKP1-Like genes in wild tomato. Plant Sci 238:105–114

    Article  CAS  PubMed  Google Scholar 

  • Zhao D, Yang M, Solava J, Ma H (1999) The ASK1 gene regulates development and interacts with the UFO gene to control floral organ identity in Arabidopsis. Dev Genet 25:209–223

    Article  CAS  PubMed  Google Scholar 

  • Zhao D, Ni W, Feng B, Han T, Petrasek MG, Ma H (2003) Members of the Arabidopsis-SKP1-like gene family exhibit a variety of expression patterns and may play diverse roles in Arabidopsis. Plant Physiol 133:203–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Huang J, Zhao ZH, Li Q, Sims TL, Xue YB (2010) The SKP1-like protein SSK1 is required for cross-pollen compatibility in S-RNase-based self-incompatibility. Plant J 62:52–63

    Article  CAS  PubMed  Google Scholar 

  • Ziaf K, Loukehaich R, Gong P, Liu H, Han Q, Wang T, Li H, Ye Z (2011) A multiple stress responsive gene ERD15 from Solanum pennelli confers stress tolerance in tobacco. Plant Cell Physiol 52:1055–1067

    Article  CAS  PubMed  Google Scholar 

  • Zsigmond L, Szepesi A, Tari I, Rigo´ G, Kira´ly A, Szabados L (2012) Overexpression of the mitochondrial PPR40 gene improves salt tolerance in Arabidopsis. Plant Sci 182:87–93

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Grant Nos. 31272201 and 31471909).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhimin Gao or Qingyan Shu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by B. Li.

Qing Hao and Hongxu Ren contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 11 kb)

Supplementary material 2 (XLSX 12 kb)

299_2016_2066_MOESM3_ESM.jpg

ESM_S3. Comparison of stress response of PSK1-overexpressing Arabidopsis transgenic plants (lines 7 - 9) and the WT. (A) Germination percentages of transgenic lines and WT plants calculated 1 days after keeping at 22 ºC in medium containing 0-125 mM NaCl. (B) Cotyledon greening rates of transgenic lines and WT plants growing in medium containing 0–125 mM NaCl for 1 week. (C) Root elongation measurement of 7-day-old plants maintained in medium for 1 week. Each column represents the average of three replicates, and the bar indicates SDs. The different characters above each column represent various significant differences at p < 0.05 (JPEG 3118 kb)

299_2016_2066_MOESM4_ESM.jpg

ESM_S4. Expression analysis of SOS1-3 in Arabidopsis plants (lines 7-9 and the WT) treated with 150 mM NaCl for 0–12 h. (A) SOS1 (B) SOS2 (C) SOS3. The different characters above each column represent various significant differences at p < 0.05 (JPEG 2450 kb)

Supplementary material 5 (XLSX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Q., Ren, H., Zhu, J. et al. Overexpression of PSK1, a SKP1-like gene homologue, from Paeonia suffruticosa, confers salinity tolerance in Arabidopsis. Plant Cell Rep 36, 151–162 (2017). https://doi.org/10.1007/s00299-016-2066-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-016-2066-z

Keywords

Navigation