Skip to main content
Log in

Significant increase of oleic acid level in the wild species Lepidium campestre through direct gene silencing

Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Simultaneous RNAi silencing of the FAD2 and FAE1 genes in the wild species Lepidium campestre improved the oil quality with 80 % oleic acid content compared to 11 % in wildtype.

Abstract

Field cress (Lepidium campestre) is a wild biennial species within the Brassicaceae family with desirable agronomic traits, thus being a good candidate for domestication into a new oilseed and catch crop. However, it has agronomic traits that need to be improved before it can become an economically viable species. One of such traits is the seed oil composition, which is not desirable either for food use or for industrial applications. In this study, we have, through metabolic engineering, altered the seed oil composition in field cress into a premium oil for food processing, industrial, or chemical industrial applications. Through seed-specific RNAi silencing of the field cress fatty acid desaturase 2 (FAD2) and fatty acid elongase 1 (FAE1) genes, we have obtained transgenic lines with an oleic acid content increased from 11 % in the wildtype to over 80 %. Moreover, the oxidatively unstable linolenic acid was decreased from 40.4 to 2.6 %, and the unhealthy erucic acid was reduced from 20.3 to 0.1 %. The high oleic acid trait has been kept stable for three generations. This shows the possibility to use field cress as a platform for genetic engineering of oil compositions tailor-made for its end uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Aldrich J, Cullis C (1993) RAPD analysis in flax: optimization of yield and reproducibility using klenTaq 1 DNA polymerase, chelex 100, and gel purification of genomic DNA. Plant Mol Biol Rep 11:128–141. doi:10.1007/BF02670471

    Article  CAS  Google Scholar 

  • Auld DL, Heikkinen MK, Erickson DA, Sernyk JL, Romero JE (1992) Rapeseed mutants with reduced levels of polyunsaturated fatty acids and increased levels of oleic acid. Crop Sci 32:657–662

    Article  CAS  Google Scholar 

  • Chen Y, Zhou XR, Zhang ZJ, Dribnenki P, Singh S, Green A (2015) Development of high oleic oil crop platform in flax through RNAi-mediated multiple FAD2 gene silencing. Plant Cell Rep 34:643–653. doi:10.1007/s00299-015-1737-5

    Article  CAS  PubMed  Google Scholar 

  • Eriksson D, Merker A (2011) Cloning and functional characterization of genes involved in fatty acid biosynthesis in the novel oilseed crop Lepidium campestre L. Plant Breed 130:407–409. doi:10.1111/j.1439-0523.2010.01825.x

    Article  CAS  Google Scholar 

  • Graef G et al (2009) A high-oleic-acid and low-palmitic-acid soybean: agronomic performance and evaluation as a feedstock for biodiesel. Plant Biotechnol J 7:411–421. doi:10.1111/j.1467-7652.2009.00408.x

    Article  CAS  PubMed  Google Scholar 

  • Harwood JL (1998) Plant lipid biosynthesis: fundamentals and agricultural applications vol 67. Cambridge University Press

  • Ivarson E, Ahlman A, Li X, Zhu LH (2013) Development of an efficient regeneration and transformation method for the new potential oilseed crop Lepidium campestre. BMC Plant Biol 13:115

    Article  PubMed  PubMed Central  Google Scholar 

  • James DW, Lim E, Keller J, Plooy I, Ralston E, Dooner HK (1995) Directed tagging of the Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene with the maize transposon activator. Plant CellOnline 7:309–319

    Article  CAS  Google Scholar 

  • Kanrar S, Venkateswari J, Dureja P, Kirti PB, Chopra VL (2006) Modification of erucic acid content in Indian mustard (Brassica juncea) by up-regulation and down-regulation of the Brassica juncea FATTY ACID ELONGATION1 (BjFAE1) gene. Plant Cell Rep 25:148–155. doi:10.1007/s00299-005-0068-3

    Article  CAS  PubMed  Google Scholar 

  • Kunst L, Taylor DC, Underhill EW (1992) Fatty acid elongation in developing seeds of Arabidopsis thaliana. Plant Physiol Biochem 30:425–434

    CAS  Google Scholar 

  • Lenser T, Theissen G (2013) Conservation of fruit dehiscence pathways between Lepidium campestre and Arabidopsis thaliana sheds light on the regulation of INDEHISCENT. Plant J Cell Mole Biol 76:545–556. doi:10.1111/tpj.12321

    Article  CAS  Google Scholar 

  • Leonard C (1994) Sources and commercial applications of high erucic vegetable oils. Lipid Tech 4:79–83

    Google Scholar 

  • Li X, Ahlman A, Yan X, Lindgren H, Zhu LH (2010) Genetic transformation of the oilseed crop Crambe abyssinica. Plant Cell Tissue Organ Culture (PCTOC) 100:149–156

    Article  CAS  Google Scholar 

  • Li X, Ahlman A, Lindgren H, Zhu LH (2011) Highly efficient in vitro regeneration of the industrial oilseed crop Crambe abyssinica. Ind Crops Prod 33:170–175. doi:10.1016/j.indcrop.2010.10.004

    Article  CAS  Google Scholar 

  • Li X et al (2012) Development of ultra-high erucic acid oil in the industrial oil crop Crambe abyssinica. Plant Biotechnol J 10:862–870

    Article  CAS  PubMed  Google Scholar 

  • Li X et al (2015) Down-regulation of crambe fatty acid desaturase and elongase in Arabidopsis and crambe resulted in significantly increased oleic acid content in seed oil. Plant Biotechnol J. doi:10.1111/pbi.12386

    Google Scholar 

  • Liu Q, Singh S, Green A (2002a) High-oleic and high-stearic cottonseed oils: nutritionally improved cooking oils developed using gene silencing. J Am Coll Nutr 21:205S–211S. doi:10.1080/07315724.2002.10719267

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Singh SP, Green AG (2002b) High-stearic and high-oleic cottonseed oils produced by hairpin RNA-mediated post-transcriptional gene silencing. Plant Physiol 129:1732–1743. doi:10.1104/pp.001933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Los DA, Murata N (1998) Structure and expression of fatty acid desaturases. Biochim Biophys Acta 1394:3–15

    Article  CAS  PubMed  Google Scholar 

  • Merker A, Eriksson D, Bertholdsson NO (2010) Barley yield increases with undersown Lepidium campestre. Acta Agric Scand Sect B Soil Plant Sci 60:269–273

    Google Scholar 

  • Millar AA, Kunst L (1997) Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme. Plant J 12:121–131

    Article  CAS  PubMed  Google Scholar 

  • Muhlhausen A, Lenser T, Mummenhoff K, Theissen G (2013) Evidence that an evolutionary transition from dehiscent to indehiscent fruits in Lepidium (Brassicaceae) was caused by a change in the control of valve margin identity genes. Plant J Cell Mole Biol 73:824–835. doi:10.1111/tpj.12079

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Phys Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Nguyen HT et al (2013) Camelina seed transcriptome: a tool for meal and oil improvement and translational research. Plant Biotechnol J 11:759–769. doi:10.1111/pbi.12068

    Article  CAS  PubMed  Google Scholar 

  • Nilsson P, Johansson SÅ, Merker A (1998) Variation in seed oil composition of species from the genera Barbarea and Lepidium. Acta Agric Scand Sect B Soil Plant Sci 48:159–164. doi:10.1080/09064719809362493

    CAS  Google Scholar 

  • Norden A, Gorbet D, Knauft D, Young C (1987) Variability in oil quality among peanut genotypes in the florida breeding program 1 peanut. Science 14:7–11

    CAS  Google Scholar 

  • Ohlrogge JB (1994) Design of new plant products: engineering of fatty acid metabolism. Plant Physiol 104:821–826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okuley J, Lightner J, Feldmann K, Yadav N, Lark E (1994) Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell 6:147–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng Q, Hu Y, Wei R, Zhang Y, Guan C, Ruan Y, Liu C (2010) Simultaneous silencing of FAD2 and FAE1 genes affects both oleic acid and erucic acid contents in Brassica napus seeds. Plant Cell Rep 29:317–325

    Article  CAS  PubMed  Google Scholar 

  • Piazza GJ, Foglia TA (2001) Rapeseed oil for oleochemical usage. Eur J Lipid Sci Technol 103:450–454. doi:10.1002/1438-9312(200107)103:7<450:AID-EJLT450>3.0.CO;2-D

    Article  CAS  Google Scholar 

  • Qu J et al (2012) Development of marker-free transgenic Jatrophaplants with increased levels of seed oleic acid. Biotechnol Biofuels 5:1–11. doi:10.1186/1754-6834-5-10

    Article  Google Scholar 

  • Rahman SM, Takagi Y, Kubota K, Miyamoto K, Kawakita T (1994) High oleic acid mutant in soybean induced by X-ray irradiation. Biosci Biotechnol Biochem 58:1070–1072

    Article  CAS  Google Scholar 

  • Sales-Campos H, Reis de Souza P, Crema Peghini B, Santana da Silva J, Ribeiro Cardoso C (2013) An overview of the modulatory effects of oleic acid in health and disease. Mini Rev Med Chem 13:201–210

    CAS  PubMed  Google Scholar 

  • Shi J et al (2015) RNAi knockdown of fatty acid elongase1 alters fatty acid composition in Brassica napus. Biochem Biophys Res Commun 466:518–522. doi:10.1016/j.bbrc.2015.09.062

    Article  CAS  PubMed  Google Scholar 

  • Stålberg K, Ellerström M, Josefsson LG, Rask L (1993) Deletion analysis of a 2S seed storage protein promoter of Brassica napus in transgenic tobacco. Plant Mol Biol 23:671–683

    Article  PubMed  Google Scholar 

  • Yin D, Deng S, Zhan K, Cui D (2007) High-oleic peanut oils produced by HpRNA-mediated gene silencing of oleate desaturase. Plant Mol Biol Rep 25:154–163

    Article  CAS  Google Scholar 

  • Zhang L et al (2014) Changes in oleic acid content of transgenic soybeans by antisense RNA mediated posttranscriptional gene silencing. Int J Genomics 2014:8. doi:10.1155/2014/921950

  • Zhou XR, Singh SP, Green AG (2013) Characterisation of the FAD2 gene family from Hiptage benghalensis: a ricinoleic acid accumulating plant. Phytochemistry 92:42–48. doi:10.1016/j.phytochem.2013.05.006

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Welander M (2000) Adventitious shoot regeneration of two dwarfing pear rootstocks and the development of a transformation protocol. J Hortic Sci Biotechnol 75:745–752

    Article  Google Scholar 

  • Zhu LH, Li XY, Welander M (2008) Overexpression of the Arabidopsis gai gene in apple significantly reduces plant size. Plant Cell Rep 27:289–296. doi:10.1007/s00299-007-0462-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Professor Sten Stymne for his engagement and support to this study. We also thank Helén Lindgren and Mirela Beganovic for always taking good care of the plants. The financial support from SLU chancellor’s strategic funding is highly acknowledged. This work is a part of the MISTRA-Biotech program (http://www.slu.se/en/collaborative-centres-and-projects/mistra-biotech), which is financed by MISTRA (the foundation for strategic environmental research) and SLU (Swedish University of Agricultural Sciences). We thank Einar and Inga Nilsson’s foundation for its partial financial support to this research and The Royal Physiographic Society of Lund for conference travel support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emelie Ivarson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by L. Peña.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivarson, E., Ahlman, A., Lager, I. et al. Significant increase of oleic acid level in the wild species Lepidium campestre through direct gene silencing. Plant Cell Rep 35, 2055–2063 (2016). https://doi.org/10.1007/s00299-016-2016-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-016-2016-9

Keywords

Navigation