Skip to main content
Log in

Reduction of GIGANTEA expression in transgenic Brassica rapa enhances salt tolerance

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Key message

Here we report the enhancement of tolerance to salt stress in Brassica rapa (Chinese cabbage) through the RNAi-mediated reduction of GIGANTEA ( GI ) expression.

Abstract

Circadian clocks integrate environmental signals with internal cues to coordinate diverse physiological outputs. The GIGANTEA (GI) gene was first discovered due to its important contribution to photoperiodic flowering and has since been shown to be a critical component of the plant circadian clock and to contribute to multiple environmental stress responses. We show that the GI gene in Brassica rapa (BrGI) is similar to Arabidopsis GI in terms of both expression pattern and function. BrGI functionally rescued the late-flowering phenotype of the Arabidopsis gi-201 loss-of-function mutant. RNAi-mediated suppression of GI expression in Arabidopsis Col-0 and in the Chinese cabbage, B. rapa DH03, increased tolerance to salt stress. Our results demonstrate that the molecular functions of GI described in Arabidopsis are conserved in B. rapa and suggest that manipulation of gene expression through RNAi and transgenic overexpression could enhance tolerance to abiotic stresses and thus improve agricultural crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abe M, Fujiwara M, Kurotani K, Yokoi S, Shimamoto K (2008) Identification of dynamin as an interactor of rice GIGANTEA by tandem affinity purification (TAP). Plant Cell Physiol 49:420–432

    Article  CAS  PubMed  Google Scholar 

  • Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas TL, Zoran MJ (2005) Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet 6:544–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao S, Ye M, Jiang S (2005) Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis. Plant Cell Rep 24:683–690

    Article  CAS  PubMed  Google Scholar 

  • Covington MF, Maloof JN, Straume M, Kay SA, Harmer SL (2008) Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol 9:R130

    Article  PubMed  PubMed Central  Google Scholar 

  • Curtis IS, Nam HG, Yun JY, Seo KH (2002) Expression of an antisense GIGANTEA (GI) gene fragment in transgenic radish causes delayed bolting and flowering. Transgenic Res 11:249–256

    Article  CAS  PubMed  Google Scholar 

  • Dodd AN, Salathia N, Hall A, Kevei E, Toth R, Nagy F, Hibberd JM, Millar AJ, Webb AAR (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309:630–633

    Article  CAS  PubMed  Google Scholar 

  • Dong MA, Farré EM, Thomashow MF (2011) CIRCADIAN CLOCK-ASSOCIATED 1 and LATE ELONGATED HYPOCOTYL regulate expression of the C-REPEAT BINDING FACTOR (CBF) pathway in Arabidopsis. Proc Natl Acad Sci USA 108:7241–7246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunford RP, Griffiths S, Christodoulou V, Laurie DA (2005) Characterisation of a barley (Hordeum vulgare L.) homologue of the Arabidopsis flowering time regulator GIGANTEA. Theor Appl Genet 110:925–931

    Article  CAS  PubMed  Google Scholar 

  • Edwards CE, Ewers BE, Williams DG, Xie Q, Lou P, Xu X, McClung CR, Weinig C (2011) The genetic architecture of ecophysiological and circadian traits in Brassica rapa. Genetics 189:375–390

    Article  PubMed  PubMed Central  Google Scholar 

  • Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Morris B, Coupland G, Putterill J (1999) GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in  Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J 18:4679–4688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fowler SG, Cook D, Thomashow MF (2005) Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock. Plant Physiol 137:961–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gehan M, Greenham K, Mockler TC, McClung CR (2015) Transcriptional networks- crops, clocks, and abiotic stress. Curr Op Plant Biol 24:39–46

    Article  CAS  Google Scholar 

  • Graf A, Smith AM (2011) Starch and the clock: the dark side of plant productivity. Trends Plant Sci 16:169–175

    Article  CAS  PubMed  Google Scholar 

  • Harmer SL (2009) The circadian system in higher plants. Annu Rev Plant Biol 60:357–377

    Article  CAS  PubMed  Google Scholar 

  • Hayama R, Izawa T, Shimamoto K (2002) Isolation of rice genes possibly involved in the photoperiodic control of flowering by a fluorescent differential display method. Plant Cell Physiol 43:494–504

    Article  CAS  PubMed  Google Scholar 

  • Hong JK, Hwnag JE, Zang YS, Lee SC, Kwon SJ, Mun JH, Kim HU, Kim JA, Jin M, Kim JS, Lee SI, Lim MH, Hur Y, Lim CO, Park BS (2008) Identification and characterization of the phytocystatin family from  Brassica rapa. J Plant Biotechnol 35:317–327

    Article  Google Scholar 

  • Hong SY, Lee S, Seo PJ, Yang M-S, Park C-M (2010) Identification and molecular characterization of a Brachypodium distachyon  GIGANTEA gene: functional conservation in monocot and dicot plants. Plant Mol Biol 72:485–497

    Article  CAS  PubMed  Google Scholar 

  • Hsu PY, Harmer SL (2014) Wheels within wheels: the plant circadian system. Trends Plant Sci 19:240–249

    Article  CAS  PubMed  Google Scholar 

  • Huq E, Tepperman JM, Quail PH (2000) GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proc Natl Acad Sci USA 97:9789–9794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SY, Park BS, Kwon SJ, Kim J, Lim MH, Park YD, Kim DY, Suh SC, Jin YM, Ahn JH, Lee YH (2007a) Delayed flowering time in Arabidopsis and Brassica rapa by the overexpression of FLOWERING LOCUS C (FLC) homologs isolated from Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plant Cell Rep 26:327–336

    Article  CAS  PubMed  Google Scholar 

  • Kim JA, Yang TJ, Kim JS, Park JY, Kwon SJ, Lim MH, Jin M, Lee SC, Lee SI, Choi BS, Um SH, Kim HI, Chun C, Park BS (2007b) Isolation of circadian-associated genes in Brassica rapa by comparative genomics with Arabidopsis thaliana. Mol Cells 23:145–153

    CAS  PubMed  Google Scholar 

  • Kim WY, Fujiwara S, Suh SS, Kim J, Kim Y, Han L, David K, Putterill J, Nam HG, Somers DE (2007c) ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449:356–360

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Kim Y, Yeom M, Kim JH, Nam HG (2008) FIONA1 is essential for regulating period length in the Arabidopsis circadian clock. Plant Cell 20:307–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JA, Kim JS, Hong JK, Lee YH, Choi BS, Seol YJ, Jeon CH (2012) Comparative mapping, genomic structure, and expression analysis of eight pseudo-response regulator genes in Brassica rapa. Mol Genet Genom 287:373–388

    Article  CAS  Google Scholar 

  • Kim J, Geng R, Gallenstein RA, Somers DE (2013a) The F-box protein ZEITLUPE controls stability and nucleocytoplasmic partitioning of GIGANTEA. Development 14:4060–4069

    Article  Google Scholar 

  • Kim WY, Ali Z, Park HJ, Park SJ, Cha JY, Perez-Hormaeche J, Quintero FJ, Shin G, Kim MR, Qiang Z, Ning L, Park HC, Lee SY, Bressan RA, Pardo JM, Bohnert HJ, Yun DJ (2013b) Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nat Commun 4:1352

    Article  PubMed  Google Scholar 

  • Kim Y, Lim J, Yeom M, Kim H, Kim J, Wang L, Kim WY, Somers DE, Nam HG (2013c) ELF4 regulates GIGANTEA chromatin access through subnuclear sequestration. Cell Rep 3:671–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch A, Kogel K-H (2014) New wind in the sails: improving the agronomic value of crop plants through RNAi-mediated gene silencing. Plant Biotech J 12:821–831

    Article  CAS  Google Scholar 

  • Koornneef M, Hanhart CJ, van der Veen JH (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Genet Genom 229:57–66

    Article  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  CAS  PubMed  Google Scholar 

  • Lee SG, Choi CS, Lee JG, Jang YA, Nam CW, Yeo KH, Lee HJ, Um YC (2012) Effects of different EC in nutrient solution on growth and quality of red mustard and Pak-Choi in plant factory. J Bio-Environ Control 21:322–326

    Article  Google Scholar 

  • Legnaioli T, Cuevas J, Mas P (2009) TOC1 functions as a molecular switch connecting the circadian clock with plant responses to drought. EMBO J 28:3745–3757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lou P, Wu J, Cheng F, Cressman LG, Wang X, McClung CR (2012) Preferential retention of circadian clock genes during diploidization following whole genome triplication in Brassica rapa. Plant Cell 24:2415–2426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin-Tryon EL, Kreps JA, Harmer SL (2007) GIGANTEA acts in blue light signaling and has biochemically separable roles in circadian clock and flowering time regulation. Plant Physiol 143:473–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsui A, Ishida J, Morosawa T, Mochizuki Y, Kaminuma E, Endo TA, Okamoto M, Nambara E, Nakajima M, Kawashima M, Satou M, Kim JM, Kobayashi N, Toyoda T, Shinozaki K, Seki M (2008) Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array. Plant Cell Physiol 49:1135–1149

    Article  CAS  PubMed  Google Scholar 

  • Michael TP, Mockler TC, Breton G, McEntee C, Byer A, Trout JD, Hazen SP, Shen R, Priest HD, Sullivan CM, Givan SA, Yanovsky M, Hong F, Kay SA, Chory J (2008) Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules. PLoS Genet 4:e14

    Article  PubMed  PubMed Central  Google Scholar 

  • Mikkelsen MD, Thomashow MF (2009) A role for circadian evening elements in cold-regulated gene expression in Arabidopsis. Plant J 60:328–339

    Article  CAS  PubMed  Google Scholar 

  • Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, Kamada H, Putterill J, Coupland G (2005) Distinct roles of  GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. Plant Cell 17:2255–2270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuno T, Yamashino T (2008) Comparative transcriptome of diurnally oscillating genes and hormone-responsive genes in Arabidopsis thaliana: insight into circadian clock-controlled daily responses to common ambient stresses in plants. Plant Cell Physiol 49:481–487

    Article  CAS  PubMed  Google Scholar 

  • Mun JH, Kwon SJ, Yang TJ, Seol YJ, Jin M, Kim JA, Lim MH, Kim JS, Baek S, Choi BS, Yu HJ, Kim DS, Kim N, Lim KB, Lee SI, Hahn JH, Lim YP, Bancroft I, Park BS (2009) Genome-wide comparative analysis of the Brassica rapa gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication. Genome Biol 10(10):R111

    Article  PubMed  PubMed Central  Google Scholar 

  • Park DH, Somers DE, Kim YS, Choy YH, Lim HK, Soh MS, Kim HJ, Kay SA, Nam HG (1999) Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 285:1579–1582

    Article  CAS  PubMed  Google Scholar 

  • Parkin IAP, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu Q-S, Barkla BJ, Vera-Estrella R, Zhu J-K, Schumaker KS (2003) Na+/H+ exchange activity in the plasma membrane of Arabidopsis. Plant Physiol 132:1041–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riboni M, Galbiati M, Tonelli C, Conti L (2013) GIGANTEA enables drought escape response via abscisic acid-dependent activation of the florigens and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS. Plant Physiol 162:1706–1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritchie RJ (2006) Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth Res 89:27–41

    Article  CAS  PubMed  Google Scholar 

  • Romanowski A, Yanovsky MJ (2015) Circadian rhythms and post-transcriptional regulation in higher plants. Front. Plant Sci 6:437

    Article  PubMed  PubMed Central  Google Scholar 

  • Salomé PA, McClung CR (2005) What makes the Arabidopsis clock tick on time? A review on entrainment. Plant Cell Environ 28:21–38

    Article  Google Scholar 

  • Sanchez A, Shin J, Davis SJ (2011) Abiotic stress and the plant circadian clock. Plant Signal Behav 6:223–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawa M, Nusinow DA, Kay SA, Imaizumi T (2007) FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318:261–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schranz M, Lysak M, Mitchell-Olds T (2006) The ABCs of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542

    Article  CAS  PubMed  Google Scholar 

  • Seo PJ, Park MJ, Lim MH, Kim SG, Lee M, Baldwin IT, Park CM (2012) A self-regulatory circuit of CIRCADIAN CLOCK-ASSOCIATED1 underlies the circadian clock regulation of temperature responses in Arabidopsis. Plant Cell 24:2427–2442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staiger D, Brown JWS (2013) Alternative splicing at the intersection of biological timing, development, and stress responses. Plant Cell 25:3640–3656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng TS, Salomé PA, McClung CR, Olszewski NE (2004) SPINDLY and GIGANTEA interact and act in Arabidopsis thaliana pathways involved in light responses, flowering, and rhythms in cotyledon movements. Plant Cell 16:1550–1563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Wang H, Wang J, Brassica rapa Genome Sequencing Project Consortium et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 28:1035–1039

    Article  Google Scholar 

  • Xie Q, Lou P, Hermand V, Aman R, Park HJ, Yun DJ, Kim WY, Salmela MJ, Ewers BE, Weinig C, Khan SL, Schaible DL, McClung CR (2015) Allelic polymorphism of GIGANTEA is responsible for naturally occurring variation in circadian period in Brassica rapa. Proc Natl Acad Sci USA 112:3829–3834

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu JW, Rubio V, Lee NY, Bai S, Lee SY, Kim SS, Liu L, Zhang Y, Irigoyen ML, Sullivan JA, Zhang Y, Lee I, Xie Q, Paek NC, Deng XW (2008) COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability. Mol Cell 32:617–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zerr DM, Hall JC, Rosbash M, Siwicki KK (1990) Circadian rhythms of period protein immunoreactivity in the CNS and the visual system of Drosophila. J Neurosci 10:2749–2762

    CAS  PubMed  Google Scholar 

  • Zhao XY, Liu MS, Li JR, Guan CM, Zhang XS (2005) The wheat TaGI1, involved in photoperiodic flowering, encodes an Arabidopsis GI ortholog. Plant Mol Biol 58:53–64

    Article  CAS  PubMed  Google Scholar 

  • Zoltowski BD, Imaizumi T (2014) Structure and function of the ZTL/FKF1/LKP2 group proteins in Arabidopsis. Enzyme 35:213–239

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Research Program for Agricultural Science & Technology Development, National Academy of Agricultural Science, (Project No. PJ10025) to JAK and from Rural Development Administration, Republic of Korea, BioGreen 21 Program (Project No. PJ01106901, PJ01106902, and PJ009615) to YWK, JAK, and CRM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin A. Kim or WeoYeon Kim.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Communicated by I. Hwang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1. BrGI structure and phylogenetic comparison with other plant GI proteins. (A) Alignment of the GI protein sequences of Brassica rapa (BrGI) and Arabidopsis thaliana (GI) using ClustalW. B. Exon–intron structure of the BrGI and GI genes. Black boxes indicate exons; lines represent introns. C. Phylogenetic comparison of the GI proteins from several dicot and monocot species. The GI protein sequences used were A. thaliana (GI; NM_102124.2), Populus trichocarpa (PtGI; XM_002307480.1), Triticum aestivum (TaGI1; AF543844.1), Hordeum vulgare (HVGI; AY740524.1), Ricinus communis (Rc; XM_002524295.1), Ipomoea nil (InGI; AB265781.1), Allium cepa (AcGIa; GQ232756.1 and AcGIb; GQ232757.1), and Oryza sativa (OsGI; NM_001048755.1). Trees were constructed using the neighbor-joining method in the MEGA software, version 4.0 (Kumar et al. 2004). Bar represents 0.05 residue substitutions per site

Supplementary Figure 2. Germination and growth of the indicated B. rapa genotypes under the indicated salt conditions. Seeds were sown on ½ MS salts, 2% sucrose, and 1% agar supplied with the indicated NaCl concentrations and grown for 2 weeks

Supplementary Figure 3. GIGANTEA protein abundance in 2-week-old transgenic B. rapa measured by Western blot analysis using an antibody directed against Arabidopsis GI.Arabidopsis wild-type (Col-0) harvested at ZT1 and ZT13 and 35S::GI-HA (constitutive GI overexpression line) plants were used as GI protein controls. B. rapa transgenic plants were harvested at ZT12.

Supplementary Figure 4. Seeds of the indicated genotypes were sown in sponge cubes and grown in nutrient solution for 2 weeks. After two to three true leaves had developed, the nutrient solution was replaced with that including either 0 or 150 mM NaCl every 2 days for 1 week.

Supplementary material 1 (PPTX 10255 kb)

Supplementary material 2 (DOC 236 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.A., Jung, He., Hong, J.K. et al. Reduction of GIGANTEA expression in transgenic Brassica rapa enhances salt tolerance. Plant Cell Rep 35, 1943–1954 (2016). https://doi.org/10.1007/s00299-016-2008-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-016-2008-9

Keywords

Navigation