Skip to main content
Log in

Molecular characterization and primary functional analysis of PeMPEC, a magnesium-protoporphyrin IX monomethyl ester cyclase gene of bamboo (Phyllostachys edulis)

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

A homologous gene of MPEC from Phyllostachys edulis was isolated and characterized. Its overexpression in Arabidopsis thaliana increased chlorophyll concentration and photosynthesis efficiency, indicating it is involved in chlorophyll biosynthesis.

Abstract

Magnesium-protoporphyrin IX monomethyl ester cyclase (MPEC) is an essential enzyme in the biosynthesis of chlorophyll, which plays an important role in photosynthesis. However, limited information is available on the roles of MPEC gene in bamboo. A homologous gene, PeMPEC was identified from Phyllostachys edulis, which comprised 1474 bp and contained an open reading frame encoding 415 amino acids. PeMPEC was transcribed abundantly in leaf blade where photosynthesis predominantly occurs, which agreed with the protein accumulation pattern confirmed by Western blotting. The PeMPEC transcription was promoted by continuous darkness for 24 h, and was suppressed by increasing light intensity (100–1500 µmo1 m−2 s−1) and high temperature (42 °C). However, transcription was induced within 0.5 h and thereafter declined with prolonged treatment (up to 12 h) under low temperature (4 °C). Although PeMPEC expressed weakly in etiolated leaves, transcript levels increased gradually with subsequent light treatment (200 µmol m−2 s−1). Overexpression of PeMPEC in Arabidopsis thaliana resulted in increased chlorophyll concentration and photosynthesis efficiency in sense transgenic plants compared with a reduction in antisense transgenic plants. These changes were consistent with the transcript levels of PeMPEC. These results indicated that PeMPEC might be involved in chlorophyll biosynthesis and play important roles in maintaining the stability of photosystems, and provide a basis for the study of chlorophyll biosynthesis and dissection of photosynthesis in bamboo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

cDNA:

Complementary DNA

F o :

Minimal fluorescence

F m :

Maximal fluorescence after darkness adaptation

F m′:

Maximum fluorescence after light adaptation

F s :

Steady-state fluorescence after light adaptation

F v :

Variable fluorescence

F v/F m :

Maximal quantum yield of PSII

IPTG:

Isopropyl β-d-1-thiogalactopyranoside

kDa:

Kilodaltons

Mg:

Magnesium

MPEC:

Mg-protoporphyrin IX monomethyl ester cyclase

ORF:

Open reading frame

P m :

Maximum photo-oxidizable P700

PSI:

Photosystem I

PSII:

Photosystem II

qPCR:

Real-time quantitative PCR

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

Y(II):

Maximal actual quantum yield of PSII

References

  • Bang WY, Jeong IS, Kim DW, Im CH, Ji C, Hwang SM, Kim SW, Son YS, Jeong J, Shiina T, Bahk JD (2008) Role of Arabidopsis CHL27 protein for photosynthesis, chloroplast development and gene expression profiling. Plant Cell Physiol 49(9):1350–1363

    Article  CAS  PubMed  Google Scholar 

  • Benedetti CE, Arruda P (2002) Altering the expression of the chlorophyllase gene ATHCOR1 in transgenic Arabidopsis caused changes in the chlorophyll-to-chlorophyllide ratio. Plant Physiol 128(4):1255–1263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bilger W, Björkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25(3):173–185

    Article  CAS  PubMed  Google Scholar 

  • Bindschedler LV, Dewdney J, Blee KA, Stone JM, Asai T, Plotnikov J, Denoux C, Hayes T, Gerrish C, Davies DR, Ausubel FM, Bolwell GP (2006) Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J 47(6):851–863

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bollivar DW, Beale SI (1996) The chlorophyll biosynthetic enzyme Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase (Characterization and partial purification from Chlamydomonas reinhardtii and Synechocystis sp. PCC 6803). Plant Physiol 112(1):105–114

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brinster RL, Allen JM, Behringer RR, Gelinas RE, Palmiter RD (1988) Introns increase transcriptional efficiency in transgenic mice. Proc Natl Acad Sci USA 85(3):836–840

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Callis J, Fromm M, Walbot V (1987) Introns increase gene expression in cultured maize cells. Genes Dev 1(10):1183–1200

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  PubMed  Google Scholar 

  • Demmig-Adams B, Adams WWI (1996) Chlorophyll and carotenoid composition in leaves of Euonymus kiautschovicus acclimated to different degrees of light stress in the field. Aust J Plant Physiol 23(5):649–659

    Article  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8(5):978–984

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fan C, Ma J, Guo Q, Li X, Wang H, Lu M (2013) Selection of reference genes for quantitative real-time PCR in bamboo (Phyllostachys edulis). PLoS One 8(2):e56573

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Feierabend J, Mikus M (1977) Occurrence of a high temperature sensitivity of chloroplast ribosome formation in several higher plants. Plant Physiol 59(5):863–867

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fuesler TP, Wong YS, Castelfranco PA (1984) Localization of Mg-chelatase and Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase activities within isolated, developing cucumber chloroplasts. Plant Physiol 75(3):662–664

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao ZM, Fan SH, Gao J, Li XP, Cai CJ, Peng ZH (2006) Extract genomic DNA from Phyllostachys edulis by CTAB-based method. Forest Res 19(6):725–728

    Google Scholar 

  • Gao ZM, Wang XC, Peng ZH, Zheng B, Liu Q (2012) Characterization and primary functional analysis of phenylalanine ammonia-lyase gene from Phyllostachys edulis. Plant Cell Rep 31(7):1345–1356

    Article  CAS  PubMed  Google Scholar 

  • Gao ZM, Liu Q, Zheng B, Chen Y (2013) Molecular characterization and primary functional analysis of PeVDE, a violaxanthin de-epoxidase gene from bamboo (Phyllostachys edulis). Plant Cell Rep 32(9):1381–1391

    Article  CAS  PubMed  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucl Acids Res 27(1):297–300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang W, Zhang SB, Cao KF (2010) The different effects of chilling stress under moderate light intensity on photosystem II compared with photosystem I and subsequent recovery in tropical tree species. Photosynth Res 103(3):175–182

    Article  CAS  PubMed  Google Scholar 

  • Jiang ZH, Peng ZH, Gao ZM, Liu C, Yang CH (2012) Characterization of different isoforms of the light-harvesting chlorophyll a/b complexes of photosystem II in bamboo. Photosynthetica 50(1):129–138

    Article  CAS  Google Scholar 

  • Kovacevic D, Dewez D, Popovic R (2007) Irradiation-induced in vivo re-localization of NADPH-protochlorophyllide oxidoreductase from prolamellar body to stroma of barley etioplast. Photosynthetica 45(1):105–109

    Article  CAS  Google Scholar 

  • Kuhlmann M, Horvay K, Strathmann A, Heinekamp T, Fischer U, Böttner S, Dröge-Laser W (2003) The alphahelical D1 domain of the tobacco bZIP transcription factor BZI-1 interacts with the ankyrin-repeat protein ANK1 and is important for BZI-1 function, both in auxin signaling and pathogen response. J Biol Chem 278(10):8786–8794

    Article  CAS  PubMed  Google Scholar 

  • Liu HH, Zheng CC (2008) MPEC: an important gene in the chlorophyll biosynthesis pathway in photosynthetic organisms. Photosynthetica 46(3):321–328

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Meskauskiene R, Nater M, Goslings D, Kesster F, Camp R, Apel K (2001) FLU: a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 98(22):12826–12831

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moseley J, Quinn J, Eriksson M, Merchant S (2000) The Crd1 gene encodes a putative di-iron enzyme required for photosystem I accumulation in copper deficiency and hypoxia in Chlamydomonas reinhardtii. EMBO J 19(10):2139–2151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moseley JL, Page MD, Alder NP, Eriksson M, Quinn J, Soto F, Theg SM, Hippler M, Merchant S (2002) Reciprocal expression of two candidate di-iron enzymes affecting photosystem I and light-harvesting complex accumulation. Plant Cell 14(3):673–688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nagata N, Tanaka R, Satoh S, Tanaka A (2005) Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell 17(1):233–240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nantel A, Quatrano RS (1996) Characterization of three rice basic leucine zipper factors, including two inhibitors of EmBP-1 DNA binding activity. J Biology Chem 271(49):31296–31305

    Article  CAS  Google Scholar 

  • Ouchane S, Steunou AS, Picaud M, Astier C (2004) Aerobic and anaerobic Mg-protoporphyrin monomethyl ester cyclases in purple bacteria: a strategy adopted to bypass the repressive oxygen control system. J Biology Chem 279(8):6385–6394

    Article  CAS  Google Scholar 

  • Papenbrock J, Grimm B (2001) Regulatory network of tetrapyrrole biosynthesis-studies of intracellular signalling involved in metabolic and developmental control of plastids. Planta 213(5):667–681

    Article  CAS  PubMed  Google Scholar 

  • Pinta V, Picaud M, Reiss-Husson F, Astier C (2002) Rubrivivax gelatinosus acsF (previously orf358) codes for a conserved, putative binuclear-iron-cluster-containing protein involved in aerobic oxidative cyclization of Mg-protoporphyrin IX monomethylester. J Bacteriol 184(3):746–753

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Porra RJ (1997) Recent progress in porphyrin and chlorophyll biosynthesis. Photochem Photobiol 65(3):492–516

    Article  CAS  Google Scholar 

  • Porra RJ, Schafer W, Katheder I, Scheer H (1995) The derivation of the oxygen atoms of the 13(1)-oxo and 3-acetyl groups of bacteriochlorophyll a from water in Rhodobacter sphaeroides cells adapting from respiratory to photosynthetic conditions: evidence for an anaerobic pathway for the formation of isocyclic ring E. FEBS Lett 371(1):21–24

    Article  CAS  PubMed  Google Scholar 

  • Pysh LD, Schmidt RJ (1996) Characterization of themaize OHP1 gene evidence of gene copy variability among inbreds. Gene 177(1–2):203–208

    Article  CAS  PubMed  Google Scholar 

  • Qin G, Gu H, Ma L, Peng Y, Deng XW, Chen Z, Qu LJ (2007) Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Res 17(5):471–482

    Article  CAS  PubMed  Google Scholar 

  • Rzeznicka K, Walker CJ, Westergren T, Kannangara CG, von Wettstein D, Merchant S, Gough SP, Hansson M (2005) Xantha-l encodes a membrane subunit of the aerobic Mgprotoporphyrin IX monomethyl ester cyclase involved in chlorophyll biosynthesis. Proc Natl Acad Sci USA 102(16):5886–5891

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbour Lab Press, New York

    Google Scholar 

  • Schreiber U, Bilger W, Neubauer C (1995) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. Ecophysiol Photosynthesis 100:49–70

    Article  Google Scholar 

  • Seong ES, Yoo JH, Lee JG, Kim HY, Hwang IS, Heo K, Kim JK, Lim JD, Sacks EJ, Yu CY (2013) Antisense-overexpression of the MsCOMT gene induces changes in lignin and total phenol contents in transgenic tobacco plants. Mol Biol Rep 40(2):1979–1986

    Article  CAS  PubMed  Google Scholar 

  • Sigrist CJA, Cerutti L, de Castro E, Langendijk-Genevaux PS, Bulliard V, Bairoch A, Hulo N (2010) PROSITE, a protein domain database for functional characterization and annotation. Nucl Acids Res 38(Database issue):D161–D166

  • Subramaniam R, Desveaux D, Spickler C, Michnick SW, Brisson N (2001) Direct visualization of protein interactions in plant cells. Nat Biotechnol 19(8):769–772

    Article  CAS  PubMed  Google Scholar 

  • Suzuki JY, Bollivar DW, Bauer CE (1997) Genetic analysis of chlorophyll biosynthesis. Annu Rev Genet 31:61–89

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Terry MJ, Kendrick RE (1999) Feedback inhibition of chlorophyll synthesis in the phytochrome chromophore-deficient aurea and yellow-green-2 mutants of tomato. Plant Physiol 119(1):143–152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tottey S, Block MA, Allen M, Westergren T, Albrieux C, Scheller HV, Merchant S, Jensen PE (2003) Arabidopsis CHL27, located in both envelope and thylakoid membranes, is required for the synthesis of protochlorophyllide. Proc Natl Acad Sci USA 100(26):16119–16124

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang HS, Zhu ZJ, Feng Z, Zhang SG, Yu C (2012) Antisense-mediated depletion of GMPase gene expression in tobacco decreases plant tolerance to temperature stresses and alters plant development. Mol Biol Rep 39(12):10413–10420

    Article  CAS  PubMed  Google Scholar 

  • Wong YS, Castelfranco PA, Goff DA, Smith KM (1985) Intermediates in the formation of the chlorophyll isocyclic ring. Plant Physiol 79(3):725–729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu J, Deng Y, Li Q, Zhu X, He Z (2014) STRIPE2 encodes a putative dCMP deaminase that plays an important role in chloroplast development in rice. J Genet Genomics 41(10):539–548

    Article  PubMed  Google Scholar 

  • Zhao HS, Peng ZH, Fei BH, Li LB, Hu T, Gao ZM, Jiang ZH (2014) BambooGDB: a bamboo genome database with functional annotation and an analysis platform. Database (Oxford):bau006

  • Zheng CC, Porat R, Lu P, O’Neill SD (1998) PNZIP is a novel mesophyll-specific cDNA that is regulated by photochrome and a circadian rhythm and encodes a protein with a leucine zipper motif. Plant Physiol 116(1):27–35

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work received financial support from the Special Fund for Forest Scientific Research in the Public Welfare from State Forestry Administration of China (No. 201504106) and the National Science Foundation of China (No. 31370588 and No. 31400557).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhimin Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by B. Li.

L. Yang and Y. Lou contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 785 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Lou, Y., Peng, Z. et al. Molecular characterization and primary functional analysis of PeMPEC, a magnesium-protoporphyrin IX monomethyl ester cyclase gene of bamboo (Phyllostachys edulis). Plant Cell Rep 34, 2001–2011 (2015). https://doi.org/10.1007/s00299-015-1846-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-015-1846-1

Keywords

Navigation