Skip to main content
Log in

Vitis vinifera VvWRKY13 is an ethylene biosynthesis-related transcription factor

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

A novel transcription factor VvWRKY13 was cloned from Vitis vinifera and found functioning in ethylene biosynthesis pathway by mediating ACS2 and ACS8 expression.

Abstract

Grapevine is one of the most economically important plants, and ethylene is a plant hormone related with its growth, development, abiotic and biotic resistance. Until now, the regulators and their mechanism of ethylene biosynthesis are still not well understood. We have cloned a novel gene from a grapevine cultivar ‘Zuoyouhong’ and named it VvWRKY13. By qRT-PCR analysis, VvWRKY13 was found to be ubiquitously expressed in the leaf, stem, flower, fruit, and root tissues, indicating that it is probably involved in numerous processes of grapevine growth and development. Overexpression of VvWRKY13 in Arabidopsis leads to constitutive triple responses and improved ethylene production. Bioinformatics analysis indicated that the promoters of ACC synthase genes ACS2 and ACS8 contain WRKYs specific binding element W-box. As a result, the expression of ACS2 and ACS8 was found to be increased significantly in VvWRKY13 overexpression lines. Together, these data reveal that the novel transcription factor VvWRKY13 is likely involved in ethylene biosynthesis by the regulation of ACS2 and ACS8 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alleweldt G, Koch R (1977) Ehylene content in ripening grape berries. Vitis 13:263–271

    Google Scholar 

  • Alonso JM, Stepanova AN, Solano R, Wisman E, Ferrari S, Ausubel FM, Ecker JR (2003) Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis. PNAS 100:2992–2997

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Batoko H, Zheng HQ, Hawes C, Moore I (2000) A Rab1 GTPase is required for transport between the endoplasmic reticulum and Golgi apparatus and for normal Golgi movement in plants. Plant Cell 12:2201–2217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18

    Article  CAS  PubMed  Google Scholar 

  • Bleecker AB, Estelle MA, Somerville C, Kende H (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241:1086–1089

    Article  CAS  PubMed  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11(2):113–116

    Article  CAS  Google Scholar 

  • Chervin C, El-Kereamy A, Roustan JP, Latche A, Lamon J, Bouzayen M (2004) Ethylene seems required for the berry development and ripening in grape, a non-climacteric fruit. Plant Sci 13(6):1301–1305

    Article  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Coombe BG (1992) Research on development and ripening of the grape berry. AJEV 43(1):101–110

    Google Scholar 

  • Downing JA (2009) The fruits and fruit trees of American. Applewood, Bedford

  • Eulgem T, Rushton PJ, Schmelzer E, Hahlbrock K, Somssich IE (1999) Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors. EMBO J 18:4689–4699

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  CAS  PubMed  Google Scholar 

  • Guo HW, Ecker JR (2004) The ethylene signaling pathway: new insights. Curr Opin Plant Biol 7:40–49

    Article  CAS  PubMed  Google Scholar 

  • Guo C, Guo R, Xu X, Gao M, Li X, Song J, Zheng Y, Wang X (2014) Evolution and expression analysis of the grape (Vitis vinifera L.) WRKY gene family. J Exp Bot 65:1513–1528

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guzman P, Ecker JR (1990) Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2:513–523

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li H, Xu Y, Xiao Y, Zhu Z, Xie X, Zhao H, Wang Y (2010) Expression and functional analysis of two genes encoding transcription factors, VpWRKY1 and VpWRKY2, isolated from Chinese wild Vitis pseudoreticulata. Planta 232:1325–1337

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Yang W, Liu D, Han Y, Zhang A, Li S (2011) Ectopic expression of a grapevine transcription factor VvWRKY11 contributes to osmotic stress tolerance in Arabidopsis. Mol Biol Rep 38:417–427

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Du W, Brandizzi F, Giovannoni JJ, Barry CS (2012) Differential control of ethylene responses by GREEN-RIPE and GREEN-RIPE LIKE1 provides evidence for distinct ethylene signaling modules in tomato. Plant Physiol 160:1968–1984

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marchive C, Mzid R, Deluc L, Barrieu F, Pirrello J, Gauthier A, Corio Costet MF, Regad F, Cailleteau B, Hamdi S (2007) Isolation and characterization of a Vitis vinifera transcription factor, VvWRKY1, and its effect on responses to fungal pathogens in transgenic tobacco plants. J Exp Bot 58:1999–2010

    Article  CAS  PubMed  Google Scholar 

  • Marchive C, Leon C, Kappel C, Coutos Thevenot P, Corio Costet MF, Delrot S, Lauvergeat V (2013) Over-expression of VvWRKY1 in grapevines induces expression of jasmonic acid pathway-related genes and confers higher tolerance to the downy mildew. PLoS One 8:e54185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Merz RP, Moser T, Holl J, Kortekamp A, Buchholz G, Zyprian E, Bogs J (2015) The transcription factor VvWRKY33 is involved in the regulation of grapevine (Vitis vinifera) defense against the oomycete pathogen Plasmopara viticola. Physiol Plant 153:365–380

    Article  CAS  PubMed  Google Scholar 

  • Mzid R, Marchive C, Blancard D, Deluc L, Barrieu F, Corio Costet MF, Drira N, Hamdi S, Lauvergeat V (2007) Overexpression of VvWRKY2 in tobacco enhances broad resistance to necrotrophic fungal pathogens. Physiol Plant 131:434–447

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Theologis A (1989) Cloning the mRNA encoding 1-aminocyclopropane-1-carboxylate synthase, the key enzyme for ethylene biosynthesis in plants. PNAS 86:6621–6625

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Whittaker DJ, Smith GS, Gardner RC (1997) Expression of ethylene biosynthetic genes in Actinidia chinensis fruit. Plant Mol Biol 34:45–55

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Zhang ZL, Zou X, Yang G, Komatsu S, Shen QJ (2006) Interactions of two abscisic-acid induced WRKY genes in repressing gibberellin signaling in aleurone cells. Plant J 46:231–242

    Article  CAS  PubMed  Google Scholar 

  • Yamagami T, Tsuchisaka A, Yamada K, Haddon WF, Harden LA, Theologis A (2003) Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. JBC 278:49102–49112

    Article  CAS  Google Scholar 

  • Yu D, Chen C, Chen Z (2001) Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell 13:1527–1540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang ZL, Xie Z, Zou X, Casaretto J, Ho TH, Shen QJ (2004) A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol 134:1500–1513

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu Z, Shi J, Cao J, He M, Wang Y (2012) VpWRKY3, a biotic and abiotic stress-related transcription factor from the Chinese wild Vitis pseudoreticulata. Plant Cell Rep 31:2109–2120

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Guoqing Song (Michigan State University) for his revision of this paper. This work was supported by the Scientific and Technological Project of Shandong Province (Grant No. 2013GNC11016), Science and Technology Project of Higher Education in Shandong Province (Grant No. J14LE12), Shandong Taishan Scholar Program to C.H.D. The project was sponsored by SRF for ROCS, SEM and National Natural Science Foundation of China (Grant No. 31401844).

Conflict of interest

We declare that the authors of this paper have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Liu.

Additional information

Communicated by C. F. Quiros.

Q. Ma and G. Zhang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 49 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Q., Zhang, G., Hou, L. et al. Vitis vinifera VvWRKY13 is an ethylene biosynthesis-related transcription factor. Plant Cell Rep 34, 1593–1603 (2015). https://doi.org/10.1007/s00299-015-1811-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-015-1811-z

Keywords

Navigation