Skip to main content
Log in

Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The aerial parts of plants are covered with a cuticle, a hydrophobic layer consisting of cutin polyester and cuticular waxes that protects them from various environmental stresses. Cuticular waxes mainly comprise very long chain fatty acids and their derivatives such as aldehydes, alkanes, secondary alcohols, ketones, primary alcohols, and wax esters that are also important raw materials for the production of lubricants, adhesives, cosmetics, and biofuels. The major function of cuticular waxes is to control non-stomatal water loss and gas exchange. In recent years, the in planta roles of many genes involved in cuticular wax biosynthesis have been characterized not only from model organisms like Arabidopsis thaliana and saltwater cress (Eutrema salsugineum), but also crop plants including maize, rice, wheat, tomato, petunia, Medicago sativa, Medicago truncatula, rapeseed, and Camelina sativa through genetic, biochemical, molecular, genomic, and cell biological approaches. In this review, we discuss recent advances in the understanding of the biological functions of genes involved in cuticular wax biosynthesis, transport, and regulation of wax deposition from Arabidopsis and crop species, provide information on cuticular wax amounts and composition in various organs of nine representative plant species, and suggest the important issues that need to be investigated in this field of study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ABC:

ATP binding cassette

ACBP:

Acyl-CoA binding protein

ACC:

Acetyl-CoA carboxylase

ECR:

Enoyl-CoA reductase

FAE:

Fatty acids elongase

FAR:

Fatty acyl-CoA reductase

GPI:

Glycosylphosphatidylinositol

HCD:

β-Hydroxyacyl-CoA dehydratase

KCR:

β-Ketoacyl-CoA reductase

KCS:

β-Ketoacyl-CoA synthase

LACS:

Long chain acyl-CoA synthase

LTP:

Lipid transfer proteins

MAH:

Midchain alkane hydroxylase

VLCFA:

Very long chain fatty acid

WSD:

Bifunctional wax synthase/acyl-CoA:diacylglycerol acyltransferase

References

  • Aarts MG, Keijzer CJ, Stiekema WJ et al (1995) Molecular characterization of the CER1 gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell 7:2115–2127

    PubMed Central  CAS  PubMed  Google Scholar 

  • Aharoni A, Dixit S, Jetter R et al (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell 16:2463–2480

    PubMed Central  CAS  PubMed  Google Scholar 

  • Avato P, Mikkelsen JD, von Wettstein-Knowles P (1982) Synthesis of epicuticular primary alcohols and intracellular fatty acids by tissue slices from cer-j59 barley leaves. Carlsberg Res Commun 47:377–390

    CAS  Google Scholar 

  • Avato P, Bianchi G, Nayak A et al (1987) Epicuticular waxes of maize as affected by the interaction of mutant gl8 with gl3, gl4 and gl15. Lipids 22:11–16

    CAS  Google Scholar 

  • Bach L, Faure J-D (2010) Role of very-long-chain fatty acids in plant development, when chain length does matter. C R Biol 333:361–370

    CAS  PubMed  Google Scholar 

  • Bach L, Michaelson LV, Haslam R et al (2008) The very-long-chain hydroxy fatty acyl-CoA dehydratase PASTICCINO2 is essential and limiting for plant development. Proc Natl Acad Sci USA 105:14727–14731

    PubMed Central  CAS  PubMed  Google Scholar 

  • Barthlott W, Neinhuis C, Cutler D et al (1998) Classification and terminology of plant epicuticular waxes. Bot J Linn Soc 126:237–260

    Google Scholar 

  • Beaudoin F, Wu X, Li F et al (2009) Functional characterization of the Arabidopsis β-ketoacyl-coenzyme A reductase candidates of the fatty acid elongase. Plant Physiol 150:1174–1191

    PubMed Central  CAS  PubMed  Google Scholar 

  • Beisson F, Li-Beisson Y, Pollard M (2012) Solving the puzzles of cutin and suberin polymer biosynthesis. Curr Opin Plant Biol 15:329–337

    CAS  PubMed  Google Scholar 

  • Bernard A, Joubès J (2013) Arabidopsis cuticular waxes: advances in synthesis, export and regulation. Prog Lipid Res 52:110–129

    CAS  PubMed  Google Scholar 

  • Bernard A, Domergue F, Pascal S et al (2012) Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex. Plant Cell 24:3106–3118

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bianchi G, Avato P, Salamini F (1979) The absence of fatty acid aldehydes in gl1 gl2 waxes. Maize Gen Coop Newsletter 53:103

    Google Scholar 

  • Bianchi A, Bianchi G, Avato P et al (1985) Biosynthetic pathways of epicuticular wax of maize as assessed by mutation, light, plant age and inhibitor studies. Maydica 30:179–198

    CAS  Google Scholar 

  • Bird D, Beisson F, Brigham A et al (2007) Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. Plant J 52:485–498

    CAS  PubMed  Google Scholar 

  • Bonaventure B, Salas JJ, Pollard MR et al (2003) Disruption of the FATB gene in Arabidopsis demonstrates an essential role of saturated fatty acids in plant growth. Plant Cell 15:1020–1033

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bourdenx B, Bernard A, Domergue F et al (2011) Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiol 156:29–45

    PubMed Central  CAS  PubMed  Google Scholar 

  • Broun P, Poindexter P, Osborne E et al (2004) WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proc Natl Acad Sci USA 101:4706–4711

    PubMed Central  CAS  PubMed  Google Scholar 

  • Buschhaus C, Jetter R (2011) Composition differences between epicuticular and intracuticular wax substructures: how do plants seal their epidermal surfaces? J Exp Bot 62:841–853

    CAS  PubMed  Google Scholar 

  • Cameron KD, Teece MA, Smart LB (2006) Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol 140:176–183

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carrasco S, Meyer T (2011) STIM proteins and the endoplasmic reticulum-plasma membrane junctions. Annu Rev Biochem 80:973–1000

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen XB, Goodwin SM, Boroff VL et al (2003) Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production. Plant Cell 15:1170–1185

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen X, Goodwin SM, Liu X et al (2005) Mutation of the RESURRECTION1 locus of Arabidopsis reveals an association of cuticular wax with embryo development 1. Plant Physiol 139:909–919

    PubMed Central  CAS  PubMed  Google Scholar 

  • DeBono A, Yeats TH, Rose JKC et al (2009) Arabidopsis LTPG is a glycosylphosphatidylinositol anchored lipid transfer protein required for export of lipids to the plant surface. Plant Cell 21:1230–1238

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dietrich CR, Perera MADN, Yandeau-Nelson DM et al (2005) Characterization of two GL8 paralogs reveals that the 3-ketoacyl reductase component of fatty acid elongase is essential for maize (Zea mays L.) development. Plant J 42:844–861

    CAS  PubMed  Google Scholar 

  • Dubos C, Stracke R, Grotewold E et al (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581

    CAS  PubMed  Google Scholar 

  • Dunn TM, Lynch DV, Michaelson LV et al (2004) A post-genomic approach to understanding sphingolipid metabolism in Arabidopsis thaliana. Ann Bot 93:483–497

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fiebig A, Mayfield JA, Miley NL et al (2000) Alterations in CER6, a gene identical to CUT1, differentially affect long-chain lipid content on the surface of pollen and stems. Plant Cell 12:2001–2008

    PubMed Central  CAS  PubMed  Google Scholar 

  • Franke R, Höfer R, Briesen I et al (2009) The DAISY gene from Arabidopsis encodes a fatty acid elongase condensing enzyme involved in the biosynthesis of aliphatic suberin in roots and the chalaza-micropyle region of seeds. Plant J 57:80–95

    CAS  PubMed  Google Scholar 

  • Go YS, Kim H, Kim HJ et al (2014) Arabidopsis cuticular wax biosynthesis is negatively regulated by the DEWAX gene encoding an AP2/ERF-type transcription factor. Plant Cell 26:1666–1680

    PubMed Central  CAS  PubMed  Google Scholar 

  • Graham LE (1993) Origin of land plants. Wiley, New York

    Google Scholar 

  • Greer S, Wen M, Bird D et al (2007) The cytochrome P450 enzyme CYP96A15 is the midchain alkane hydroxylase responsible for formation of secondary alcohols and ketones in stem cuticular wax of Arabidopsis. Plant Physiol 145:653–667

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guo L, Yang H, Zhang X et al (2013) Lipid transfer protein 3 as a target of MYB96 mediates freezing and drought stress in Arabidopsis. J Exp Bot 64:1755–1767

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hannoufa A, McNevin J, Lemieux B (1993) Epicuticular wax of eceriferum mutants of Arabidopsis thaliana. Phytochemistry 33:851–855

    CAS  Google Scholar 

  • Hansen JD, Pyee J, Xia Y et al (1997) The glossy1 locus of maize and an epidermis-specific cDNA from Klenia odora define a class of receptor-like proteins required for the normal accumulation of cuticular waxes. Plant Physiol 113:1091–1100

    PubMed Central  CAS  PubMed  Google Scholar 

  • Haslam TM, Kunst L (2013) Extending the story of very-long-chain fatty acid elongation. Plant Sci 210:93–107

    CAS  PubMed  Google Scholar 

  • Haslam TM, Manas-Fernandez A, Zhao L et al (2012) Arabidopsis ECERIFERUM2 is a component of the fatty acid elongation machinery required for fatty acid extension to exceptional lengths. Plant Physiol 160:1164–1174

    PubMed Central  CAS  PubMed  Google Scholar 

  • Haslam T, Haslam RP, Thoraval D et al (2015) CER2-LIKE proteins have unique biochemical and physiological functions in very-long-chain fatty acid elongation. Plant Physiol. (pii: pp.114.253195) [Epub ahead of print]

  • Hooker TS, Millar AA, Kunst L (2002) Significance of the expression of the CER6 condensing enzyme for cuticular wax production in Arabidopsis. Plant Physiol 129:1568–1580

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hooker TS, Lam P, Zheng H et al (2007) A core subunit of the RNA-processing/degrading exosome specifically influences cuticular wax biosynthesis in Arabidopsis. Plant Cell 19:904–913

    PubMed Central  CAS  PubMed  Google Scholar 

  • Isaacson T, Kosma DK, Matas AJ et al (2009) Cutin deficiency in the tomato fruit cuticle consistently affects resistance to microbial infection and biomechanical properties, but not transpirational water loss. Plant J 60:363–377

    CAS  PubMed  Google Scholar 

  • Islam MA, Du H, Ning J et al (2009) Characterization of Glossy1-homologous genes in rice involved in leaf wax accumulation and drought resistance. Plant Mol Biol 70:443–456

    CAS  PubMed  Google Scholar 

  • Ito Y, Kimura F, Hirakata K et al (2011) Fatty acid elongase is required for shoot development in rice. Plant J 66:680–688

    CAS  PubMed  Google Scholar 

  • James DW, Lim E, Keller J et al (1995) Directed tagging of the Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene with the maize transposon activator. Plant Cell 7:309–319

    PubMed Central  CAS  PubMed  Google Scholar 

  • Javelle M, Vernoud V, Depege-Fargeix N et al (2010) Overexpression of the epidermis-specific homeodomain-leucine zipper IV transcription factor Outer Cell Layer1 in maize identifies target genes involved in lipid metabolism and cuticle biosynthesis. Plant Physiol 154:273–286

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jenks MA, Rich PJ, Peters PJ et al (1992) Epicuticular wax morphology of bloomless (bm) mutants in Sorghum bicolor. Int J Plant Sci 153:311–319

    Google Scholar 

  • Jenks MA, Tuttle HA, Eigenbrode SD et al (1995) Leaf epicuticular waxes of the eceriferum mutants in Arabidopsis. Plant Physiol 108:369–377

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jessen D, Olbrich A, Knüfer J et al (2011) Combined activity of LACS1 and LACS4 is required for proper pollen coat formation in Arabidopsis. Plant J 68:715–726

    CAS  PubMed  Google Scholar 

  • Jetter R, Kunst L (2008) Plant surface lipid biosynthetic pathways and their utility for metabolic engineering of waxes and hydrocarbon biofuels. Plant J 54:670–683

    CAS  PubMed  Google Scholar 

  • Jetter R, Kunst L, Samuels AL (2007) Composition of plant cuticular waxes. In: Riederer M, Müller C (eds) Biology of the plant cuticle, vol 23. Blackwell, Oxford, pp 145–181

    Google Scholar 

  • Jung KH, Han MJ, Dy Lee et al (2006) Wax-deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development. Plant Cell 18:3015–3032

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kagale S, Koh C, Nixon J et al (2014) The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure. Nat Commun 5:3706

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kannangara R, Branigan C, Liu Y et al (2007) The transcription factor WIN1/SHN1 regulates cutin biosynthesis in Arabidopsis thaliana. Plant Cell 19:1278–1294

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim H, Lee SB, Kim HJ et al (2012) Characterization of glycosylphosphatidylinositol-anchored lipid transfer protein 2 (LTPG2) and overlapping function between LTPG/LTPG1 and LTPG2 in cuticular wax export or accumulation in Arabidopsis thaliana. Plant Cell Physiol 53:1391–1403

    CAS  PubMed  Google Scholar 

  • Kim J, Jung JH, Lee SB et al (2013) Arabidopsis 3-ketoacyl-coenzyme A synthase9 is involved in the synthesis of tetracosanoic acids as precursors of cuticular waxes, suberins, sphingolipids, and phospholipids. Plant Physiol 162:567–580

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim S, Park M, Yeom SI et al (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46:270–278

    CAS  PubMed  Google Scholar 

  • Koornneef M, Hanhart CJ, Thiel F (1989) A genetic and phenotypic description of eceriferum (cer) mutants in Arabidopsis thaliana. J Hered 80:118–122

    Google Scholar 

  • Kosma DK, Jenks MA (2007) Eco-physiological and molecular-genetic determinants of plant cuticle function in drought and salt stress tolerance. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in Molecular Breeding toward Drought and Salt Tolerant Crops. Springer, Dordrecht, pp 91–120

    Google Scholar 

  • Kosma DK, Bourdenx B, Bernard A et al (2009) The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiol 151:1918–1929

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kosma DK, Parsons EP, Isaacson T et al (2010) Fruit cuticle lipid composition during development in tomato ripening mutants. Physiol Plant 139:107–117

    CAS  PubMed  Google Scholar 

  • Kunst L, Samuels AL (2003) Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 42:51–80

    CAS  PubMed  Google Scholar 

  • Kunst L, Samuels L (2009) Plant cuticles shine: advances in wax biosynthesis and export. Curr Opin Plant Biol 12:721–727

    CAS  PubMed  Google Scholar 

  • Kunst L, Taylor DC, Underhill EW (1992) Fatty-acid elongation in developing seeds of Arabidopsis thaliana. Plant Physiol Biochem 30:425–434

    CAS  Google Scholar 

  • Lam P, Zhao L, McFarlane HE et al (2012) RDR1 and SGS3, components of RNA-mediated gene silencing, are required for the regulation of cuticular wax biosynthesis in developing inflorescence stems of Arabidopsis. Plant Physiol 159:1385–1395

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lam P, Zhao L, Eveleigh N et al (2014) The exosome and trans-acting small interfering RNAs regulate cuticular wax biosynthesis during Arabidopsis inflorescence stem development. Plant Physiol 167:323–336

    PubMed  Google Scholar 

  • Lee SB, Suh MC (2013) Recent advances in cuticular wax biosynthesis and its regulation in Arabidopsis. Mol Plant 6:246–249

    CAS  PubMed  Google Scholar 

  • Lee SB, Suh MC (2014) Cuticular wax biosynthesis is up-regulated by the MYB94 transcription factor in Arabidopsis. Plant Cell Physiol 56:48–60

    PubMed  Google Scholar 

  • Lee SB, Go YS, Bae HJ et al (2009a) Disruption of glycosylphosphatidylinositol-anchored lipid transfer protein gene altered cuticular lipid composition, increased plastoglobules, and enhanced susceptibility to infection by the fungal pathogen Alternaria brassicicola. Plant Physiol 150:42–54

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee SB, Jung SJ, Go YS et al (2009b) Two Arabidopsis 3-ketoacyl CoA synthase genes, KCS20 and KCS2/DAISY, are functionally redundant in cuticular wax and root suberin biosynthesis, but differentially controlled by osmotic stress. Plant J 60:462–475

    CAS  PubMed  Google Scholar 

  • Lee SB, Kim H, Kim RJ et al (2014) Overexpression of Arabidopsis MYB96 confers drought resistance in Camelina sativa via cuticular wax accumulation. Plant Cell Rep 33:1535–1546

    CAS  PubMed  Google Scholar 

  • Leide J, Hildebrandt U, Reussing K et al (2007) The developmental pattern of tomato fruit wax accumulation and its impact on cuticular transpiration barrier properties: effects of a deficiency in β-ketoacyl-coenzyme a synthase (LeCER6). Plant Physiol 144:1667–1679

    PubMed Central  CAS  PubMed  Google Scholar 

  • Leide J, Hildebrandt U, Vogg G et al (2011) The positional sterile (ps) mutation affects cuticular transpiration and wax biosynthesis of tomato fruits. J Plant Physiol 168:871–877

    CAS  PubMed  Google Scholar 

  • Lemieux B (1996) Molecular genetics of epicuticular waxes biosynthesis. Trends Plant Sci 1:312–318

    Google Scholar 

  • Li YH, Beisson F, Ohlrogge J et al (2007) Monoacylglycerols are components of root waxes and can be produced in the aerial cuticle by ectopic expression of a suberin-associated acyltransferase. Plant Physiol 144:1267–1277

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li F, Wu X, Lam P et al (2008) Identification of the wax ester synthase/acyl-coenzyme A: diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis. Plant Physiol 148:97–107

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li L, Li D, Liu S et al (2013) The maize glossy13 gene, cloned via BSR-Seq and Seq-Walking encodes a putative ABC transporter required for the normal accumulation of epicuticular waxes. PLoS One 8:e82333

    PubMed Central  PubMed  Google Scholar 

  • Li-Beisson Y, Shorrosh B, Beisson F et al (2013) Acyl-Lipid metabolism. Arabidopsis Book 11:e0161. doi:10.1199/tab.0161

    PubMed Central  PubMed  Google Scholar 

  • Liu S, Dietrich CR, Schnable PS (2009) DLA-based strategies for cloning insertion mutants: cloning the gl4 locus of maize using Mu transposon tagged alleles. Genetics 183:1215–1225

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu S, Yeh C-T, Tang HM et al (2012) Gene mapping via bulked segregant RNA-Seq (BSR-Seq). PLoS One 7:e36406. doi:10.1371/journal.pone.0036406

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lü S, Song T, Kosma DK et al (2009) Arabidopsis CER8 encodes long-chain acyl CoA synthetase 1 (LACS1) that has overlapping functions with LACS2 in plant wax and cutin synthesis. Plant J 59:553–564

    PubMed  Google Scholar 

  • Lü S, Zhao H, Parsons EP et al (2011) The glossyhead1 allele of ACC1 reveals a principal role for multidomain acetyl-coenzyme A carboxylase in the biosynthesis of cuticular waxes by Arabidopsis. Plant Physiol 157:1079–1092

    PubMed Central  PubMed  Google Scholar 

  • Lü S, Zhao H, Des Marais DL et al (2012) Arabidopsis ECERIFERUM9 involvement in cuticle formation and maintenance of plant water status. Plant Physiol 159:930–944

    PubMed Central  PubMed  Google Scholar 

  • Luo B, Xue XY, Hu WL et al (2007) An ABC transporter gene of Arabidopsis thaliana, AtWBC11, is involved in cuticle development and prevention of organ fusion. Plant Cell Physiol 48:1790–1802

    CAS  PubMed  Google Scholar 

  • Mao B, Cheng Z, Lei C et al (2012) Wax crystal-sparse leaf2, a rice homologue of WAX2/GL1, is involved in synthesis of leaf cuticular wax. Planta 235:39–52

    CAS  PubMed  Google Scholar 

  • McFarlane HE, Shin JJH, Bird DA et al (2010) Arabidopsis ABCG transporters, which are required for export of diverse cuticular lipids, dimerize in different combinations. Plant Cell 22:3066–3075

    PubMed Central  CAS  PubMed  Google Scholar 

  • McFarlane HE, Watanabe Y, Yang W et al (2014) Golgi- and trans-Golgi network-mediated vesicle trafficking is required for wax secretion from epidermal cells. Plant Physiol 164:1250–1260

    PubMed Central  CAS  PubMed  Google Scholar 

  • McNevin JP, Woodward W, Hannoufa A et al (1993) Isolation and characterization of eceriferum (cer) mutants induced by T-DNA insertions in Arabidopsis thaliana. Genome 36:610–618

    CAS  PubMed  Google Scholar 

  • Ménard R, Verdier G, Ors M et al (2014) Histone H2B monoubiquitination is involved in the regulation of cutin and wax composition in Arabidopsis thaliana. Plant Cell Physiol 55:455–466

    PubMed  Google Scholar 

  • Millar AA, Kunst L (1997) Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme. Plant J 12:121–131

    CAS  PubMed  Google Scholar 

  • Millar AA, Clemens S, Zachgo S et al (1999) CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme. Plant Cell 11:825–838

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nadakuduti SS, Pollard M, Kosma DK et al (2012) Pleiotropic phenotypes of the sticky peel mutant provide new insight into the role of CUTIN DEFICIENT2 in epidermal cell function in tomato. Plant Physiol 159:945–960

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nawrath C, Schreiber L, Franke RB et al (2013) Apoplastic diffusion barriers in arabidopsis. Arabidopsis Book 11:e0167. doi:10.1199/tab.0167

    PubMed Central  PubMed  Google Scholar 

  • O’Toole JC, Cruz RT (1983) Genotypic variation in epicuticular wax of rice. Crop Sci 23:392–400

    Google Scholar 

  • Oshima Y, ShikataM Koyama T et al (2013) MIXTA-like transcription factors and WAX INDUCER1/SHINE1 coordinately regulate cuticle development in Arabidopsis and Torenia fournieri. Plant Cell 25:1609–1624

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ouyang S, Zhu W, Hamilton J et al (2007) The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Res 35:883–887

    Google Scholar 

  • Panikashvili D, Savaldi-Goldstein S, Mandel T et al (2007) The Arabidopsis DESPERADO/AtWBC11 transporter is required for cutin and wax secretion. Plant Physiol 145:1345–1360

    PubMed Central  CAS  PubMed  Google Scholar 

  • Panikashvili D, Shi JX, Bocobza S et al (2010) The Arabidopsis DSO/ABCG11 transporter affects cutin metabolism in reproductive organs and suberin in roots. Mol Plant 3:563–575

    CAS  PubMed  Google Scholar 

  • Panikashvili D, Shi JX, Schreiber L et al (2011) The Arabidopsis ABCG13 transporter is required for flower cuticle secretion and patterning of the petal epidermis. New Phytol 190:113–124

    CAS  PubMed  Google Scholar 

  • Parsons EP, Popopvsky S, Lohrey GT et al (2013) Fruit cuticle lipid composition and water loss in a diverse collection of pepper (Capsicum). Physiol Plant 149:160–174

    CAS  PubMed  Google Scholar 

  • Pascal S, Bernard A, Sorel M et al (2013) The Arabidopsis cer26 mutant, like the cer2 mutant, is specifically affected in the very-long-chain fatty acid elongation process. Plant J 73:733–746

    CAS  PubMed  Google Scholar 

  • Pighin JA, Zheng HQ, Balakshin LJ et al (2004) Plant cuticular lipid export requires an ABC transporter. Science 306:702–704

    CAS  PubMed  Google Scholar 

  • Pollard M, Beisson F, Li Y et al (2008) Building lipid barriers: biosynthesis of cutin and suberin. Trends Plant Sci 13:236–246

    CAS  PubMed  Google Scholar 

  • Pruitt RE, Vielle-Calzada JP, Ploense SE et al (2000) FIDDLEHEAD a gene required to suppress epidermal cell interactions in Arabidopsis encodes a putative lipid biosynthetic enzyme. Proc Natl Acad Sci USA 97:1311–1316

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pu YY, Gao J, Guo YL et al (2013) A novel dominant glossy mutation causes suppression of wax biosynthesis pathway and deficiency of cuticular wax in Brassica napus. BMC Plant Biol 13:215

    PubMed Central  PubMed  Google Scholar 

  • Qin BX, Tang D, Huang J et al (2011) Rice OsGL1-1 is involved in leaf cuticular wax and cuticle membrane. Mol Plant 4:985–995

    CAS  PubMed  Google Scholar 

  • Quist TM, Sokolchik I, Shi H et al (2009) HOS3, an ELO-like gene, inhibits effects of ABA and implicates a S-1-P/ceramide control system for abiotic stress responses in Arabidopsis thaliana. Mol Plant 2:138–151

    PubMed Central  CAS  PubMed  Google Scholar 

  • Raffaele S, Vailleau F, Léger A et al (2008) A MYB transcription factor regulates very-long-chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis. Plant Cell 20:752–767

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rashotte AM, Jenks MA, Nguyen TD et al (1997) Epicuticular wax variation in ecotypes of Arabidopsis thaliana. Phytochemistry 45:251–255

    CAS  PubMed  Google Scholar 

  • Razeq FM, Kosma DK, Rowland O et al (2014) Extracellular lipids of Camelina sativa: characterization of chloroform-extractable waxes from aerial and subterranean surfaces. Phytochemistry 106:188–196

    CAS  PubMed  Google Scholar 

  • Roudier F, Gissot L, Beaudoin F et al (2010) Very-long-chain fatty acids are involved in polar auxin transport and developmental patterning in Arabidopsis. Plant Cell 22:364–375

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rowland O, Zheng H, Hepworth SR et al (2006) CER4 encodes an alcohol-forming fatty acyl-coenzyme A reductase involved in cuticular wax production in Arabidopsis. Plant Physiol 142:866–877

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rowland O, Lee R, Franke R et al (2007) The CER3 wax biosynthetic gene from Arabidopsis thaliana is allelic to WAX2/YRE/FLP1. FEBS Lett 581:3538–3544

    CAS  PubMed  Google Scholar 

  • Samuels L, Kunst L, Jetter R (2008) Sealing plant surfaces: cuticular wax formation by epidermal cells. Ann Rev Plant Biol 59:683–707

    CAS  Google Scholar 

  • Schnurr J, Shockey J, Browse J (2004) The acyl-CoA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis. Plant Cell 16:629–642

    PubMed Central  CAS  PubMed  Google Scholar 

  • Seo PJ, Lee SB, Suh MC et al (2011) The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell 23:1138–1152

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shepherd T, Robertson GW, Griffiths DW et al (1995) Effects of environment on the composition of epicuticular wax from Kale and Swede. Phytochemistry 40:407–417

    CAS  Google Scholar 

  • Shephered T, Griffiths DW (2006) The effects of stress on plant cuticular waxes. New Phytol 171:469–499

    Google Scholar 

  • Smirnova A, Leide J, Riederer M (2013) Deficiency in a very-long-chain fatty acid β-ketoacyl-CoA synthase (SlCER6) of tomato impairs microgametogenesis and causes floral organ fusion. Plant Physiol 161:196–209

    PubMed Central  CAS  PubMed  Google Scholar 

  • Steinmüller D, Tevini M (1985) Action of ultraviolet radiation (UV-B) upon cuticular waxes in some crop plants. Planta 164:557–564

    PubMed  Google Scholar 

  • Sturaro M, Hartings H, Schmelzer E et al (2005) Cloning and characterization of GLOSSY1, a maize gene involved in cuticle membrane and wax production. Plant Physiol 138:478–489

    PubMed Central  CAS  PubMed  Google Scholar 

  • Suh MC, Samuels AL, Jetter R et al (2005) Cuticular lipid composition, surface structure, and gene expression in Arabidopsis stem epidermis. Plant Physiol 139:1649–1665

    PubMed Central  CAS  PubMed  Google Scholar 

  • Todd J, Post-Beittenmiller D, Jaworski JG (1999) KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. Plant J 17:119–130

    CAS  PubMed  Google Scholar 

  • Velasco R, Korfhage C, Salamini A et al (2002) Expression of the glossy2 gene of maize during plant development. Maydica 47:71–81

    Google Scholar 

  • Vogg G, Fischer S, Leide J et al (2004) Tomato fruit cuticular waxes and their effects on transpiration barrier properties: functional characterization of a mutant deficient in a very-long-chain fatty acid β-ketoacyl-CoA synthase. J Exp Bot 55:1401–1410

    CAS  PubMed  Google Scholar 

  • von Wettstein-Knowles P (1971) The molecular phenotypes of the eceriferum mutants. In: Nilan RA (ed) Barley genetics II. Washington State University Press, Pulman, pp 146–193

    Google Scholar 

  • von Wettstein-Knowles P (1979) Genetics and biosynthesis of plant epicuticular waxes. In Advances in the Biochemistry and Physiology of Plant Lipids. In: Liljenberg C (ed) Appelqvist LA. Elsevier North-Holland Biornedical Press, Amsterdam, pp 1–26

    Google Scholar 

  • Wang Z, Guhling O, Yao R et al (2011) Two oxidosqualene cyclases responsible for biosynthesis of tomato fruit cuticular triterpenoids. Plant Physiol 155:540–552

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang YH, Wan LY, Zhang LX et al (2012) An ethylene response factor OsWR1 responsive to drought stress transcriptionally activates wax synthesis related genes and increases wax production in rice. Plant Mol Biol 78:275–288

    CAS  PubMed  Google Scholar 

  • Weng H, Molina I, Shockey J et al (2010) Organ fusion and defective cuticle function in a lacs1 lacs2 double mutant of Arabidopsis. Planta 231:1089–1100

    CAS  PubMed  Google Scholar 

  • Wu R, Li S, He S et al (2011) CFL1, a WW domain protein, regulates cuticle development by modulating the function of HDG1, a class IV homeodomain transcription factor, in rice and Arabidopsis. Plant Cell 23:3392–3411

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xia Y, Nikolau BJ, Schnable PS (1996) Cloning and characterization of CER2, an Arabidopsis gene that affects cuticular wax accumulation. Plant Cell 8:1291–1304

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xu X, Dietrich CR, Delledonne M et al (1997) Sequence analysis of the cloned GLOSSY8 gene of maize suggests that it may code for a beta-ketoacyl reductase required for the biosynthesis of cuticular waxes. Plant Physiol 115:501–510

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xu X, Feng J, Lü S et al (2014) Leaf cuticular lipids on the Shandong and Yukon ecotypes of saltwater cress, Eutrema salsugineum, and their response to water deficiency and impact on cuticle permeability. Physiol Plant 151:446–458

    CAS  PubMed  Google Scholar 

  • Xue Y, Xiao S, Kim J et al (2014) Arabidopsis membrane-associated acyl-CoA-binding protein ACBP1 is involved in stem cuticle formation. J Exp Bot 65:5473–5483

    PubMed Central  PubMed  Google Scholar 

  • Yang M, Yang Q, Fu T et al (2011) Overexpression of the Brassica napus BnLAS gene in Arabidopsis affects plant development and increases drought tolerance. Plant Cell Rep 30:373–388

    CAS  PubMed  Google Scholar 

  • Yeats TH, Rose JKC (2013) The formation and function of plant cuticles. Plant Physiol 163:5–29

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yu D, Ranathunge K, Huang H et al (2008) Wax Crystal-Sparse Leaf1 encodes a β-ketoacyl CoA synthase involved in biosynthesis of cuticular waxes on rice leaf. Planta 228:675–685

    CAS  PubMed  Google Scholar 

  • Zhang J-Y, Broeckling CD, Blancaflor EB et al (2005) Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J 42:689–707

    CAS  PubMed  Google Scholar 

  • Zhang J-Y, Broeckling CD, Sumner LW et al (2007) Heterologous expression of two Medicago truncatula putative ERF transcription factor genes, WXP1 and WXP2, in Arabidopsis led to increased leaf wax accumulation and improved drought tolerance, but differential response in freezing tolerance. Plant Mol Biol 64:265–278

    CAS  PubMed  Google Scholar 

  • Zheng H, Rowland O, Kunst L (2005) Disruptions of the Arabidopsis enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell 17:1467–1481

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou LY, Ni ED, Yang JW et al (2013) Rice OsGL1-6 is involved in leaf cuticular wax accumulation and drought resistance. PLoS One 8:e65139. doi:10.1371/journal.pone.0065139

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu X, Xiong L (2013) Putative megaenzyme DWA1 plays essential roles in drought resistance by regulating stress-induced wax deposition in rice. Proc Natl Acad Sci USA 110:17790–17795

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu L, Guo J, Zhu J et al (2014) Enhanced expression of EsWAX1 improves drought tolerance with increased accumulation of cuticular wax and ascorbic acid in transgenic Arabidopsis. Plant Physiol Biochem 75:24–35

    PubMed  Google Scholar 

Download references

Acknowledgments

We would like to express our sincere gratitude to Ljerka Kunst (University of British Columbia) for her critical review. This work was supported by grants from the Next-Generation BioGreen 21 Program (PJ0110522015) of the Rural Development Administration, Republic of Korea, and the National Research Foundation (2013R1A2A2A01015672) of Korea.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi Chung Suh.

Additional information

Communicated by N. Stewart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.B., Suh, M.C. Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species. Plant Cell Rep 34, 557–572 (2015). https://doi.org/10.1007/s00299-015-1772-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-015-1772-2

Keywords

Navigation