Skip to main content

Advertisement

Log in

Overexpression of CuZnSOD from Arachis hypogaea alleviates salinity and drought stress in tobacco

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Overexpression of CuZnSOD gene from Arachis hypogaea demonstrating its involvement in abiotic stress tolerance.

Abstract

Abiotic stress is accompanied by the formation of reactive oxygen species (ROS) such as superoxide, hydrogen peroxide, and hydroxyl radicals, causing extensive cellular damage and inhibition of photosynthesis that limit the plant productivity. The level of ROS in cells needs to be tightly regulated and the toxic effects of ROS are countered by enzymatic as well as non-enzymatic antioxidant systems. The superoxide dismutase is the first enzyme involved in the detoxification of ROS and converts superoxide (O ·−2 ) radicals to H2O2. A full-length cDNA clone encoding a CuZnSOD, named AhCuZnSOD, was isolated from the salt tolerant cell lines of Arachis hypogaea, stably thriving at 200 mM NaCl. The cell line showed higher transcript accumulation under multiple abiotic stresses, including drought, salinity, cold and oxidative stress treatment. The functional role of AhCuZnSOD in alleviation of abiotic stress was assessed by its overexpression in transgenic tobacco plants. The T1 transgenic plants showed improved tolerance to salinity and dehydration stress as indicated by higher seed germination and better chlorophyll content. The transgenic plants survived under longer periods of water deficiency and salinity stress and displayed improved recovery after rehydration compared to the wild type (WT) plants. The enhanced level of the transgene correlated with higher relative water content, less electrolyte damage, less malondialdehyde, higher antioxidant enzyme activity, H2O2 and O ·−2 accumulation under stress conditions compared to WT plants. Our results substantiate that increased levels of SOD activity brought about by overexpression of AhCuZnSOD gene may play an important role in ameliorating oxidative injury induced by various environmental stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    CAS  PubMed  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Arnon DJ (1949) Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93

    Article  CAS  PubMed  Google Scholar 

  • Badawi GH, Yamauchi Y, Shimada E, Sasaki R, Kawano N (2004) Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Sci 66:919–928

    Article  Google Scholar 

  • Barr HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficit in leaves. Aust J Biol Sci 15:413–428

    Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bowler C, Van Montagu M, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116

    Article  CAS  Google Scholar 

  • Buell R, Wing RA, McCombie WA, Ouyang S (2005) Sequence, annotation, and analysis of synteny between rice chromosome 3 and diverged grass species. Genome Res 15(9):1284–1291

    Article  CAS  PubMed  Google Scholar 

  • Chen GX, Asada K (1989) Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol 30:987–998

    CAS  Google Scholar 

  • Das M, Chauhan H, Chhibbar A, Rizwanul Haq QM, Khurana P (2011) High-efficiency transformation and selective tolerance against biotic and abiotic stress in mulberry, Morus indica cv. K2, by constitutive and inducible expression of tobacco osmotin. Transgenic Res 20:231–246

    Article  CAS  PubMed  Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    Article  CAS  Google Scholar 

  • Du YY, Wang PC, Chen J, Song CP (2008) Comprehensive functional analysis of the catalase gene family in Arabidopsis thaliana. J Integr Plant Biol 50:1318–1326

    Article  CAS  PubMed  Google Scholar 

  • Fadzilla NM, Finch RH, Burdon RH (1997) Salinity, oxidative stress and antioxidant responses in shoot cultures of rice. J Exp Bot 48:325–331

    Article  CAS  Google Scholar 

  • Faize M, Burgos L, Faize L, Piqueras A, Nicolas E, Barba-Espin G, Clemente-Moreno MJ, Alcobendas R, Artlip T, Hernandez JA (2011) Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. J Exp Bot 62(8):2599–2613

    Article  CAS  PubMed  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Descourvieres P, Kunert KJ (1994) Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant Cell Environ 17:507–523

    Article  CAS  Google Scholar 

  • Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112

    Article  CAS  PubMed  Google Scholar 

  • Getzoff ED, Tainer JA, Stempien MM, Bell GI, Hallewell RA (1989) Evolution of CuZn superoxide dismutase and the Greek key β barrel structural motif. Proteins 5:322–336

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Gomez JM, Jimeanez A, Olmos Sevilla F (2004) Location and effects of long term NaCl stress on superoxide dismutase and ascorbate peroxidase isoenzyme of pea (Pisum sativum cv. Puget) chloroplasts. J Exp Bot 55(394):119–130

    Article  Google Scholar 

  • Gupta AS, Webb RP, Holaday AS, Allen RD (1993) Overexpression of superoxide dismutase protects plants from oxidative stress. Plant Physiol 103:1067–1073

    PubMed Central  PubMed  Google Scholar 

  • Hare PD, Cress WA, Van Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553

    Article  CAS  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hernandez JA, Almansa MS (2002) Short term effects of salt stress on antioxidant system and leaf water relations of pea leaves. Physiol Plant 115:251–257

    Article  CAS  PubMed  Google Scholar 

  • Hernandez J, Jimenez A, Mullineaux P, Sevilla F (2000) Tolerance of pea plants (Pisum sativum) to long term salt stress is associated with induction of antioxidant defences. Plant Cell Environ 23:853–862

    Article  CAS  Google Scholar 

  • Hernández-Nistal J, Dopico B, Labrador E (2002) Cold and salt stress regulates the expression and activity of a chickpea cytosolic Cu/Zn superoxide dismutase. Plant Sci 163:507–514

    Article  Google Scholar 

  • Hofgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res 16:9877

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holmberg N, Bülow L (1998) Improving stress tolerance in plants by gene transfer. Trends Plant Sci 3:61–66

    Article  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Hossain MA, Piyatida P, Teixeira da Silva JA, Fujita M (2011) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:872–875

    Google Scholar 

  • Hwang CS, Rhie G, Oh JH, Huh WK, Yim HS, Kang SO (2002) Copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence. Microbiology 148(Pt 11):3705–3713

    CAS  PubMed  Google Scholar 

  • Jain M, Mathur G, Koul S, Sarin NB (2001) Ameliorative effects of proline on salt stress induced lipid peroxidation in cell lines of groundnut (Arachis hypogaea L.). Plant Cell Rep 20:463–468

    Article  CAS  Google Scholar 

  • Jaspers P, Kangasjarvi J (2010) Reactive oxygen species in abiotic stress signaling. Physiol Plant 138(4):405–413

    Article  CAS  PubMed  Google Scholar 

  • Kasai T, Suzuki T, Ogawa KOK, Inagaki Y, Ichinose Y, Toyoda K, Shiraishi T (2006) Pea extracellular Cu/Zn-superoxide dismutase respon- sive to signal molecules from a fungal pathogen. J Gen Plant Pathol 72:265–272

    Article  CAS  Google Scholar 

  • Kaya C, Ashraf M, Dikilitaş M, Tuna AL (2013) Alleviation of salt stress-induced adverse effects on maize plants by exogenous application of indoleacetic acid (IAA) and inorganic nutrients—A field trial. Aust J Crop Sci 7:249–254

    CAS  Google Scholar 

  • Keller GA, Warner TG, Steimer KS, Hallewell RA (1991) Cu, Zn superoxide dismutase is a peroxisomal enzyme in human fibroblasts and hepatoma cells. Proc Natl Acad Sci USA 88(16):7381–7385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim SY, Lim JH, Park MR, Kim YJ, Park TI, Seo YW, Choi KG, Yun SJ (2005) Enhanced antioxidant enzymes are associated with reduced hydrogen peroxide in barley roots under saline stress. J Biochem Mol Biol 38:218–224

    Article  CAS  PubMed  Google Scholar 

  • Kim MD, Kim YH, Kwon SY, Yun DJ, Kwak SS (2010) Enhanced tolerance to methyl viologen-induced oxidative stress and high temperature in transgenic potato plants overexpressing the CuZnSOD, APX and NDPK2 genes. Physiol Plant 140:153–162

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Yusuf MA, Singh P, Sardar M, Sarin NB (2013) Modulation of antioxidant machinery in α-tocopherol-enriched transgenic Brassica juncea plants tolerant to abiotic stress conditions. Protoplasma 250(5):1079–1089

    Article  CAS  PubMed  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JDG, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leclercq J, Martin F, Sanier C, Clement Vidal A, Fabre D, Oliver G, Lardet L, Ayar A, Peyramard M, Montoro P (2012) Over-expression of a cytosolic isoform of the HbCuZnSOD gene in Hevea brasiliensis changes its response to a water deficit. Plant Mol Biol 80:255–272

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Ahsan N, Lee KW, Kim DH, Kwak SS, Kwon SY, Kim TH, Lee BH (2007) Simultaneous overexpression of both Cu/Zn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. J Plant Physiol 164:1626–1638

    Article  CAS  PubMed  Google Scholar 

  • Lee YP, Ahmad R, Lee HS, Kwak SS, Shafqat MN, Kwon SY (2013) Improved tolerance of Cu/Zn superoxide dismutase and ascorbate peroxidase expressing transgenic tobacco seeds and seedlings against multiple abiotic stresses. Int J Agric Biol 624:1814–9596

    Google Scholar 

  • Li YJ, Hai RL, Du XH, Jiang XN, Lu H (2009) Over-expression of a populus peroxisomal ascorbate peroxidase (PpAPX) gene in tobacco plants enhances stress tolerance. Plant Breed 128(4):404–410

    Article  CAS  Google Scholar 

  • Li AH, Na BK, Ahn SK, Cho SH, Pak JH, Park YK, Kim TS (2010) Functional expression and characterization of a cytosolic copper/zinc-superoxide dismutase of Spirometra erinacei. Parasitol Res 106(3):627–635

    Article  PubMed  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Miller AF (2004) Superoxide dismutases: active sites that save, but a protein that kills. Curr Opin Chem Biol 8(2):162–168

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Zilinskas BA (1994) Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought. Plant Journal 5:397–405

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Morita S, Tsukamoto S, Sakamoto A, Makino H, Nakauji E, Kaminaka H, Masumura T, Ogihara Y, Satoh S, Tanaka K (2012) Differences in intron-mediated enhancement of gene expression by the first intron of cytosolic superoxide dismutase gene from rice in monocot and dicot plants. Plant Biotechnol 29:115–119

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissues cultures. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  • Nayyar H, Gupta D (2006) Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stress and antioxidants. Environ Exp Bot 58:106–113

    Article  CAS  Google Scholar 

  • Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signalling. Curr Opin Plant Biol 5:388–395

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (2005) Redox homeostasis and antioxidant signalling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1876

    Article  PubMed Central  PubMed  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez- Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484

    Article  CAS  PubMed  Google Scholar 

  • Noreen Z, Ashraf M (2009) Assessment of variation in antioxidative defence system in salt-treated pea (Pisum sativum) cultivars and its putative use as salinity tolerant markers. J Plant Physiol 166:1764–1774

    Article  CAS  PubMed  Google Scholar 

  • Pinhero RG, Rao MV, Paliyath G, Murr DP (1997) Changes in activities of antioxidant enzymes and their relationship to genetic and paclobutrazol-induced chilling tolerance of maize seedlings. Plant Physiol 114:695–704

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prashanth SR, Sadhasivam V, Parida A (2008) Overexpression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati- 1 confers abiotic stress tolerance. Transgenic Res 17:281–291

    Article  CAS  PubMed  Google Scholar 

  • Ray PD, Huang B, Tsuj Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24(5):981–990

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rogers SO, Bendich AJ (1994) Extraction of total cellular DNA from plants, algae and fungi. Plant Mol Biol Manual D1:1–8

    Google Scholar 

  • Romman SA, Shatnawi M (2011) Isolation and expression analysis of chloroplastic copper/zinc superoxide dismutase gene in barley. S Afr J Bot 77:328–334

    Article  Google Scholar 

  • Sairam RK, Rao KV, Srivastava GC (2002) Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci 163:1037–1046

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor, New York

    Google Scholar 

  • Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol 101:7–12

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scandalios JG (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38:995–1014

    Article  CAS  PubMed  Google Scholar 

  • Sen Gupta A, Heinen JL, Holaday AS, Burke JJ, Allen RD (1993) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Sci USA 90:1629–1633

    Article  CAS  Google Scholar 

  • Shannon MC (1997) Adaptation of plants to salinity. Adv Agron 60:75–120

    Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 12:1–26

    Article  Google Scholar 

  • Shiriga K, Sharma R, Kumar K, Yadav SK, Hossain F, Thirunavukkarasu N (2014) Expression pattern of superoxide dismutase under drought stress in Maize. Int J Innov Res Sci Eng Technol 3(4):11333–11337

    Google Scholar 

  • Smith IK, Vierheller TL, Thorne CA (1989) Properties and functions of glutathione reductase in plants. Physiol Plant 77:449–456

    Article  CAS  Google Scholar 

  • Sturtz LA, Diekert K, Jensen LT, Lill R, Culotta VC (2001) A fraction of yeast Cu, Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. J Biol Chem 276:38084–38089

    CAS  PubMed  Google Scholar 

  • Sunkar R, Bartels D, Kirch HH (2003) Overexpression of a stress-inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance. Plant J 35:452–464

    Article  CAS  PubMed  Google Scholar 

  • Szabados L, Savoure A (2009) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  PubMed  Google Scholar 

  • Takemura T, Hanagata N, Sugihara K, Baba S, Karube I, Dubinsky Z (2000) Physiological and biochemical responses to salt stress in the mangrove. Bruguiera gymnorrhiza Aquat Bot 68:15–28

    Article  CAS  Google Scholar 

  • Takemura T, Hanagata N, Dubinsky Z, Karube I (2002) Molecular characterization and response to salt stress of mRNAs encoding cytosolic Cu/Zn superoxide dismutase and catalase from Bruguiera gymnorrhiza. Trees 16:94–99

    Article  CAS  Google Scholar 

  • Tanaka K, Hibino T, Hayashi Y, Tanaka A, Kishitani S, Takabe T, Yokota S, Takabe T (1999) Salt tolerance of transgenic rice overexpression yeast mitochondrial Mn-SOD in chloroplasts. Plant Sci 148:131–138

    Article  CAS  Google Scholar 

  • Tang L, Kwon SY, Kim SH, Kim JS, Choi JS (2006) Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature. Plant Cell Rep 25:1380–1386

    Article  CAS  PubMed  Google Scholar 

  • Tarchoune I, Sgherri C, Izzo R, Lachaal M, Ouerghi Z, Navari-Izzo F (2010) Antioxidative responses of Ocimum basilicum to sodium chloride or sodium sulphate salinization. Plant Physiol Biochem 48:772–777

    Article  CAS  PubMed  Google Scholar 

  • Tiwari JK, Munshi AD, Kumar R, Pandey RN, Arora A, Bhat JS, Sureja AK (2010) Effect of salt stress on cucumber: Na+/K+ ratio, osmolyte concentration, phenols and chlorophyll content. Acta Physiol Plant 32:103–114

    Article  CAS  Google Scholar 

  • Torres MA, Dangl JL, Jones JD (2002) Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci USA 99:517–522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van Breusegem F, Slooten L, Stassart J-M, Botterman J, Moens T, Van Montagu M, Inze D (1999) Effect of over-production of tobacco MnSOD in maize chloroplast on foliar tolerance to cold and oxidative stress. J Exp Bot 50:71–78

    Article  Google Scholar 

  • Velikova V, Edreva A, Loreto F (2004) Endogenous isoprene protects Phragmites australis leaves against singlet oxygen. Physiol Plant 122:219–225

    Article  CAS  Google Scholar 

  • Verslues PE, Sharma S (2010) Proline metabolism and its implications for plant-environment interaction. Arabidopsis Book 8:e0140. doi:10.1199/tab.0140

    Article  PubMed Central  PubMed  Google Scholar 

  • Voloudakis AE, Marmey P, Delannoy E, Jalloul A, Martinez C, Nicole M (2006) Molecular cloning and characterization of Gossypium hirsutum superoxide dismutase genes during cotton–Xanthomonas campestris pv. malvacearum interaction. Physiol Mol Plant Pathol 68(4–6):119–127

    Article  CAS  Google Scholar 

  • Wang WB, Kim YH, Lee HS, Kim KY, Deng XP, Kwak SS (2009) Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiol Biochem 47:570–577

    Article  CAS  PubMed  Google Scholar 

  • Wang YC, Qu GZ, Li HY, Wu YJ, Wang C, Liu GF, Yang CP (2010) Enhanced salt tolerance of transgenic poplar plants expressing a manganese superoxide dismutase from Tamarix androssowii. Mol Biol Rep 37(2):1119–1124

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Duan X, Yang J, Beeching JR, Zhang P (2013) Coupled expression of Cu/Zn- superoxide dismutase and catalase in cassava improves tolerance against cold and drought stresses. Plant Signal Behav 8:24–25

    Google Scholar 

  • Yan YS, Wang L, Huang SZ (2005) Isolation of genes encoding peanut seed protein. Plant Sci 169(2):439–445

    Article  CAS  Google Scholar 

  • Yusuf MA, Kumar D, Rajwanshi R, Strasser RJ, Tsimilli-Michael M, Govindjee, Sarin NB (2010) Overexpression of gamma-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. Biochim Biophys Acta 1797:1428–1438

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

NPN and DCS acknowledge the financial support from the Department of Science and Technology and Council for Scientific and Industrial Research. Partial funds from Department of Science and Technology (D.S.T.-PURSE, D.S.T.-F.I.S.T, DST WOS-A) and Jawaharlal Nehru University are gratefully acknowledged. The authors thank Dr. Mohd. Aslam Yusuf (Integral University, Lucknow, India) and Dr. Deepak Kumar (SLS, JNU) for their helpful advice on the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neera Bhalla Sarin.

Additional information

Communicated by M. Prasad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negi, N.P., Shrivastava, D.C., Sharma, V. et al. Overexpression of CuZnSOD from Arachis hypogaea alleviates salinity and drought stress in tobacco. Plant Cell Rep 34, 1109–1126 (2015). https://doi.org/10.1007/s00299-015-1770-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-015-1770-4

Keywords

Navigation