Skip to main content
Log in

Natural allelic diversity in OsDREB1F gene in the Indian wild rice germplasm led to ascertain its association with drought tolerance

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Three coding SNPs and one haplotype identified in the OsDREB1F gene have potential to be associated with drought tolerance in rice.

Abstract

Drought is a serious constraint to rice production worldwide, that can be addressed by deployment of drought tolerant genes. OsDREB1F, one of the most potent drought tolerance transcription activator genes, was re-sequenced for allele mining and association study in a set of 136 wild rice accessions and four cultivated rice. This analysis led to identify 22 SNPs with eight haplotypes based on allelic variations in the accessions used. The nucleotide variation-based neutrality tests suggested that the OsDREB1F gene has been subjected to purifying selection in the studied set of rice germplasm. Six different OsDREB1F protein variants were identified on the basis of translated amino acid residues amongst the orthologues. Five protein variants were truncated due to deletions in coding region and found susceptible to drought stress. Association study revealed that three coding SNPs of this gene were significantly associated with drought tolerance. One OsDREB1F variant in the activation domain of OsDREB1F gene which led to conversion of aspartate amino acid to glutamate was found to be associated with drought tolerance. Three-dimensional homology modeling assisted to understand the functional significance of this identified potential allele for drought tolerance in rice. The natural allelic variants mined in the OsDREB1F gene can be further used in translational genomics for improving the water use efficiency in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allah AA (2009) Genetic studies on leaf rolling and some root traits under drought conditions in rice (Oryza sativa L.). African J Biotechnol 8:6241–6248

    Google Scholar 

  • Alizade A (2002) Soil, water and plants relationship, 3rd edn. Emam Reza University Press, Mashhad

    Google Scholar 

  • Blum A (1988) Plant breeding for stress environments. CRC INC, Florida

    Google Scholar 

  • Boyer J (1982) Plant productivity and environment. Science 218:443–448

    Article  CAS  PubMed  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TN, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Cai CZ, Han LY, Ji ZL, Chen X, Chen YZ (2003) SVM-Prot: Web-based support vector machine software for functional classification of a protein from its primary sequence. Nucleic Acids Res 31:3692–3697

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garrity DP, O’Toole JC (1995) Selection for reproductive stage drought avoidance in rice, using infrared thermometry. Agron J 87:773–779

    Article  Google Scholar 

  • Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AM, Francia E, Mare C, Tondelli A, Stanca AM (2008) Drought tolerance improvement in crop plants: an integrative view from breeding to genomics. Field Crop Res 105:1–14

    Article  Google Scholar 

  • Chang TT, Loresto GC, Tagum PO (1974) Screening rice germplasm for drought resistance. SABRAO J 6(1):9–16

    Google Scholar 

  • Chelah MKB, Nordin MNB, Musliania MI, Khanif YM, Jahan MS (2011) Composting increases BRIS soil health and sustains rice production on bris soil. ScienceAsia 37:291–295

    Article  Google Scholar 

  • Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    Article  CAS  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought- high-salt- and cold-responsive gene expression. Plant J 33:751–763

    Article  CAS  PubMed  Google Scholar 

  • Edae EA, Byrne PF, Manmathan H, Haley SD, Moragues M, Lopes MS, Reynolds MP (2013) Association mapping and nucleotide sequence variation in five drought tolerance candidate genes in spring wheat. plant Genome. doi:10.3835/plantgenome2013.04.0010

    Google Scholar 

  • Ehrenreich IM, Hanzawa Y, Chou L, Roe JL, Kover XP, Purugganan MD (2009) Candidate gene association mapping of Arabidopsis flowering time. Genetics 183:325–335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fadeev EA et al (2009) NMR structure of the amino-terminal domain of the lambda integrase protein in complex with DNA: immobilization of a flexible tail facilitates beta-sheet recognition of the major groove. J Mol Biol 388:682–690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fotovat R, Valizadeh M, Toorehi M (2007) Association between water-use-efficiency components and total chlorophyll content (SPAD) in wheat (Triticum aestivum L.) under well-watered and drought stress conditions. J Food Agric Environ 5:225–227

    CAS  Google Scholar 

  • Foyer CH, Descourvieres P, Kunert KJ (1994) Photo oxidative stress in plants. Plant Physiol 92:696–717

    Article  CAS  Google Scholar 

  • Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

    PubMed Central  CAS  PubMed  Google Scholar 

  • Arjenaki FG, Jabbari R, Morshedi A (2012) Evaluation of drought stress on relative water content, chlorophyll content and mineral elements of wheat (Triticum aestivum L.) varieties. Intl J Agri Crop Sci 4(11):726–729

    Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    Article  CAS  PubMed  Google Scholar 

  • Khush GS, Ling KC, Aquino RC, Aguiero VM (1977) Breeding for resistance to grassy stunt in rice. In: Proceedings of the 3rd international congress of the society for the advancement of breeding researchers in Asia and Oceania (SABRAO). Canberra, 12–13 Feb 1977

  • Ladizinsky G (1985) Founder effect in crop-plant evolution. Econ Bot 39:191–199

    Article  Google Scholar 

  • Laskowski RA, Rullmann JAC, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Bio mol NMR 8:477–496

    CAS  Google Scholar 

  • Lata C, Prasad M (2013) Validation of an allele-specific marker associated with dehydration stress tolerance in a core set of foxtail millet accessions. Plant Breed 132:496–499

    CAS  Google Scholar 

  • Lata C, Prasad M (2014) Association of an allele-specific marker with dehydration stress tolerance in foxtail millet suggests SiDREB2 to be an important QTL. J Plant Biochem Biotechno. 23:119–122

    Article  CAS  Google Scholar 

  • Lata C, Bhutty S, Bahadur RP, Majee M, Prasad M (2011) Association of an SNP in a novel DREB2-like gene SiDREB2 with stress tolerance in foxtail millet [Setaria italica (L.)]. J Exp Bot 62:3387–3401

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Latha R, Rubia L, Bennett J, Swaminathan MS (2004) Allele mining for stress tolerance genes in Oryza species and related germplasm. Mol Biotechnol 27:101–108

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Gonzalez SC, Huber D, Ersoz E, Davis JM, Neale DB (2008) Association genetics in Pinus taeda L. II. Carbon isotope discrimination. Heredity 101:19–26

    Article  Google Scholar 

  • Mirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    Article  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Ommen OE, Donnelly A, Vanhoutvin S, van Oijen M, Manderscheid R (1999) Chlorophyll content of spring wheat flag leaves grown under elevated CO2 concentrations and other environmental stresses within the ESPACE—wheat project. Eur J Agron 10:197–203

    Article  Google Scholar 

  • Rizhsky L, Hongjian L, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130:1143–1151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide: the response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rozas J, Sánchez Del Barrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  CAS  PubMed  Google Scholar 

  • Rushton PJ, Bokowiec MT, Han S, Zhang H, Brannock JF, Chen X, Laudeman TW, Timko MP (2008) Tobacco transcription factors: novel insights into transcriptional regulation in the Solanaceae. Plant Physiol 147:280–295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  CAS  PubMed  Google Scholar 

  • Simmonds NW (1976) Evolution of Crop Plants. Longman, London

    Google Scholar 

  • Singh NK, Dalal V, Batra K, Singh BK, Chitra G, Singh A, Ghazi IA, Yadav M, Pandit A, Dixit R, Singh PK, Singh H, Koundal KR, Gaikwad K, Mohapatra T, Sharma TR (2007) Single-copy genes define a conserved order between rice and wheat for understanding differences caused by duplication, deletion, and transposition of genes. Funct Integr Genomics 7(1):17–35

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Choudhury DR, Singh AK, Kumar S, Srinivasan K, Tyagi RK, Singh NK, Singh R (2013) Comparison of SSR and SNP markers in estimation of genetic diversity and population structure of Indian rice varieties. PLoS One 8(12):e84136

    Article  PubMed Central  PubMed  Google Scholar 

  • Szabados L, Savoure A (2009) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  PubMed  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vikram P, Mallikarjuna Swamy BP, Dixit S, Ahmed HU, Sta Cruz MT, Singh AK, Kumar A (2011) qDTY1.1 a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds. BMC Genet 12:89

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C (2008) Over expression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Bio 67:589–602

    Article  CAS  Google Scholar 

  • Watterson GA (1975) On the number of segregation sites. Theoret Popul Biol 7:256–276

    Article  CAS  Google Scholar 

  • Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:407–410

    Article  Google Scholar 

  • Yamanaka S, Nakamura I, Nakai H, Sato YI (2003) Dual origin of the cultivated rice based on molecular markers of newly collected annual and perennial strains of wild rice species, Oryza nivara and O. rufipogon. Genet Resour Crop Evol 50:529–538

    Article  CAS  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Bai G, Liu S, Luo N, Wang Y, Richmond DS, Pijut PM, Jackson SA, Yu J, Jiang Y (2013) Association of candidate genes with drought tolerance traits in diverse perennial ryegrass accessions. J Exp Bot 64:1537–1551

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The financial assistance received from Indian Council for Agricultural Research funded “Network Project on Transgenic Crops” project is gratefully acknowledged. We are thankful to NBPGR gene bank for providing seeds of 26 O. nivara and 5 O. rufipogon accessions used in this study.

Conflict of interest

All the authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagendra Kumar Singh.

Additional information

Communicated by M. Prasad.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 460 kb)

Supplementary material 2 (DOC 360 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B.P., Jayaswal, P.K., Singh, B. et al. Natural allelic diversity in OsDREB1F gene in the Indian wild rice germplasm led to ascertain its association with drought tolerance. Plant Cell Rep 34, 993–1004 (2015). https://doi.org/10.1007/s00299-015-1760-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-015-1760-6

Keywords

Navigation