Skip to main content
Log in

Identification of genes that may regulate the expression of the transcription factor production of anthocyanin pigment 1 (PAP1)/MYB75 involved in Arabidopsis anthocyanin biosynthesis

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

A putative RNA-binding protein with a single RNA Recognition Motif (At3G63450) is involved in anthocyanin biosynthesis via its ability to modulate the transcript level of a major positive regulator PAP1 in Arabidopsis.

Abstract

The R2R3 MYB-activator production of anthocyanin pigment 1 (PAP1)/MYB75 plays a major role in anthocyanin biosynthesis in Arabidopsis in combination with one of three bHLH activators including transparent test 8 (TT8), enhancer of glabra3 (EGL3), glabra3 (GL3), and the WD-repeat transcription factor transparent testa 1 (TTG1), forming ternary MYB-basic HLH-WD40 complexes. Transcriptional activation of PAP1 expression is largely triggered by changes in light color and intensity, temperature fluctuations, nutrient status, and sugar and hormone treatments. However, the immediate upstream and downstream regulatory factors for PAP1 transcription are largely unknown. In the present study, using a T-DNA insertional mutagenesis approach, we transformed pap1-Dominant (pap1D) plants to modulate the levels of endogenous PAP1 transcripts. We employed Restriction Site Extension (RSE)-PCR analysis of 247 homogenous T3 genetic mutant lines exhibiting variations in anthocyanin accumulation compared to pap1D and identified 92 lines with T-DNA integrated in either intra- or inter-genic locations. This analysis revealed 80 novel candidate proteins, including a putative RNA-binding protein with a single RNA Recognition Motif (At3G63450), which may directly or indirectly regulate PAP1 expression at the transcriptional level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allan AC, Hellens RP, Laing WA (2008) MYB transcription factors that colour our fruit. Trends Plant Sci 13:99–102

    Article  CAS  PubMed  Google Scholar 

  • Borevitz JO, Blount J, Dixon RA, Lamb C (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12:2383–2394

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Dare A, Schaffer RJ, Lin-Wang K, Allan C, Hellens RP (2008) Identification of a cis-regulatory element by transient analysis of coordinately regulated genes. Plant Methods 4:17

    Article  PubMed Central  PubMed  Google Scholar 

  • Das PK, Shin DH, Choi SB, Yoo SD, Choi G, Park Y-I (2012a) Cytokinins enhance sugar-induced anthocyanin biosynthesis in Arabidopsis. Mol Cells 34:93–101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Das PK, Shin DH, Choi SB, Park Y-I (2012b) Sugar-hormone cross-talk in anthocyanin biosynthesis. Mol Cells 34:501–507

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Daxinger L, Hunter B, Sheikh M, Jauvion V, Gasciolli V, Vaucheret H, Matzke M, Furner I (2008) Unexpected silencing effects from T-DNA tags in Arabidopsis. Trends Plant Sci 13:4–6

    Article  CAS  PubMed  Google Scholar 

  • Devaiah BN, Nagarajan VK, Raghothama KG (2007) Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6. Plant Physiol 145:147–159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dubos C, Le Gourrierec J, Baudry A, Huep G, Lanet E, Debeaujon I, Routaboul JM, Alboresi A, Weisshaar B, Lepiniec L (2008) MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. Plant J 55:940–953

    Article  CAS  PubMed  Google Scholar 

  • Forsbach A, Schubert D, Lechtenberg B, Gils M, Schmidt R (2003) A comprehensive characterization of single-copy T-DNA insertions in the Arabidopsis thaliana genome. Plant Mol Biol 52:161–176

    Article  CAS  PubMed  Google Scholar 

  • Frishman D, Mokrejs M, Kosykh D, Kastenmüller G, Kolesov G, Zubrzycki I, Gruber C, Geier B, Kaps A, Albermann K, Volz A, Wagner C, Fellenberg M, Heumann K, Mewes HW (2003) The PEDANT genome database. Nucleic Acids Res 31:207–211

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao Y, Zhao Y (2013) Epigenetic suppression of T-DNA insertion mutants in Arabidopsis. Mol Plant 6:539–549

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gonzalez A, Zhao M, Leavitt JM, Lloyd AM (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53:814–827

    Article  CAS  PubMed  Google Scholar 

  • Gou JY, Felippes FF, Liu CJ, Weigel D, Wang JW (2011) Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell 23:1512–1522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Greenboim-Wainberg Y, Maymon I, Borochov R, Alvarez J, Olszewski N, Ori N, Eshed Y, Weiss D (2005) Cross talk between gibberellin and cytokinin: the Arabidopsis GA response inhibitor SPINDLY plays a positive role in cytokinin signaling. Plant Cell 17:92–102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gruber H, Heijde M, Heller W, Albert A, Seidlitz HK, Ulm R (2010) Negative feedback regulation of UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. Proc Natl Acad Sci USA 16:20132–20137

    Article  Google Scholar 

  • Hodgkin J (2005) Genetic suppression. WormBook 27:1–13

    Google Scholar 

  • Jeong SW, Das PK, Jeoung SC, Song JY, Lee HK, Kim YK, Kim WJ, Park YI, Yoo SD, Choi SB, Choi G, Park Y-I (2010) Ethylene suppression of sugar-induced anthocyanin pigmentation in Arabidopsis. Plant Physiol 154:1514–1531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ji J, Braam J (2010) Restriction site extension PCR: a novel method for high throughput characterization of target DNA fragments and genome walking. PLoS One 5:e10577

    Article  PubMed Central  PubMed  Google Scholar 

  • Kang H, Park SJ, Kwak KJ (2013) Plant RNA chaperones in stress response. Trends Plant Sci 18:100–106

    Article  CAS  PubMed  Google Scholar 

  • Kliebenstein DJ, Lim JE, Landry LG, Last RL (2002) Arabidopsis UVR8 regulates ultraviolet-B signal transduction and tolerance and contains sequence similarity to human regulator of chromatin condensation. Plant Physiol 130:234–243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koes R, Verweij W, Quattrocchio F (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10:236–242

    Article  CAS  PubMed  Google Scholar 

  • Koh EJ, Kwon YR, Kim KI, Hong SW, Lee H (2009) Altered ARA2 (RABA1a) expression in Arabidopsis reveals the involvement of a Rab/YPT family member in auxin-mediated responses. Plant Mol Biol 70:113–122

    Article  CAS  PubMed  Google Scholar 

  • Koops P, Pelser S, Ignatz M, Klose C, Marrocco-Selden K, Kretsch T (2011) EDL3 is an F-box protein involved in the regulation of abscisic acid signaling in Arabidopsis thaliana. J Exp Bot 62:5547–5560

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krysan PJ, Young JC, Sussman MR (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11:2283–2290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Z, Shi MZ, Xie DY (2014) Regulation of anthocyanin biosynthesis in Arabidopsis thaliana red pap1-D cells metabolically programmed by auxins. Planta 239:765–781

    Article  CAS  PubMed  Google Scholar 

  • Lorković ZJ (2009) Role of plant RNA-binding proteins in development, stress response and genome organization. Trends Plant Sci 14:229–236

    Article  PubMed  Google Scholar 

  • Matsui K, Umemura Y, Ohme-Takagi M (2008) AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. Plant J 55:954–967

    Article  CAS  PubMed  Google Scholar 

  • Matzke MA, Priming M, Trnovsky J, Matzke AJM (1989) Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J 8:643–649

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mayerhofer R, Koncz-Kalman Z, Nawrath C, Bakkeren G, Crameri A, Angelis K, Redei GP, Schell J, Hohn B, Koncz C (1991) T-DNA integration: a mode of illegitimate recombination in plants. EMBO J 10:697–704

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ni DA, Sozzani R, Blanchet S, Domenichini S, Reuzeau C, Cella R, Bergounioux C, Raynaud C (2009) The Arabidopsis MCM2 gene is essential to embryo development and its over-expression alters root meristem function. New Phytol 184:311–322

    Article  CAS  PubMed  Google Scholar 

  • Petroni K, Tonelli C (2011) Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci 181:219–229

    Article  CAS  PubMed  Google Scholar 

  • Renault L, Nassar N, Vetter I, Becker J, Klebe C, Roth M, Wittinghofer A (1998) The 1.7 Å crystal structure of the regulator of chromosome condensation (RCC1) reveals a seven-bladed propeller. Nature 5:97–101

    Google Scholar 

  • Revenkova E, Masson J, Koncz C, Afsar K, Jakovleva L, Paszkowski J (1999) Involvement of Arabidopsis thaliana ribosomal protein S27 in mRNA degradation triggered by genotoxic stress. EMBO J 18:490–499

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rosado A, Schapire AL, Bressan RA, Harfouche AL, Hasegawa PM, Valpuesta V, Botella MA (2006) The Arabidopsis tetratricopeptide repeat-containing protein TTL1 is required for osmotic stress responses and abscisic acid sensitivity. Plant Physiol 142:1113–1126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rowan DD, Cao M, Lin-Wang K, Cooney JM, Jensen DJ, Austin PT, Hunt MB, Norling CR, Hellens P, Schaffer RJ, Allan AC (2009) Environmental regulation of leaf colour in red 35S:PAP1 Arabidopsis thaliana. New Phytol 182:102–115

    Article  CAS  PubMed  Google Scholar 

  • Rubin G, Tohge T, Matsuda F, Saito K, Scheible WR (2009) Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. Plant Cell 21:3567–3584

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shin DH, Choi MG, Kim K, Bang G, Cho M, Choi SB, Choi G, Park Y-I (2013a) HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription factor in Arabidopsis. FEBS Lett 587:1543–1547

    Article  CAS  PubMed  Google Scholar 

  • Shin DH, Choi MG, Lee HK, Cho M, Choi SB, Choi G, Park YI (2013b) Calcium dependent sucrose uptake links sugar signaling to anthocyanin biosynthesis in Arabidopsis. Biochem Biophys Res Commun 430:634–639

    Article  CAS  PubMed  Google Scholar 

  • Stevens R, Mariconti L, Rossignol P, Perennes C, Cella R, Bergounioux C (2002) Two E2F sites in the Arabidopsis MCM3 promoter have different roles in cell cycle activation and meristematic expression. J Biol Chem 277:32978–32984

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Ohmiya A (2008) Seeing is believing: engineering anthocyanin and carotenoid biosynthetic pathways. Curr Opin Biotechnol 19:190–197

    Article  CAS  PubMed  Google Scholar 

  • Teng S, Keurentjes J, Bentsink L, Koornneef M, Smeekens S (2005) Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiol 139:1840–1852

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang X, Chen Y, Zou J, Wu W (2007) Involvement of a cytoplasmic glyceraldehyde-3-phosphate dehydrogenase GapC-2 in low-phosphate-induced anthocyanin accumulation in Arabidopsis. Chin Sci Bull 52:1764–1770

    Article  CAS  Google Scholar 

  • Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223

    Article  CAS  PubMed  Google Scholar 

  • Yoshida H, Nagata M, Saito K, Wang KL, Ecker JR (2005) Arabidopsis ETO1 specifically interacts with and negatively regulates type 2 1-aminocyclopropane-1-carboxylate synthases. BMC Plant Biol 5:14

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant PJ8205 from the Next-Generation BioGreen 21 Program, Rural Development Administration, and Grant 2011-0031343 from the Advanced Biomass Research and Development Center, Republic of Korea.

Conflict of interest

The authors have no competing financial interests to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youn-Il Park.

Additional information

Communicated by J. S. Shin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 30 kb)

Supplementary material 2 (PPTX 412 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, D.H., Cho, M., Choi, M.G. et al. Identification of genes that may regulate the expression of the transcription factor production of anthocyanin pigment 1 (PAP1)/MYB75 involved in Arabidopsis anthocyanin biosynthesis. Plant Cell Rep 34, 805–815 (2015). https://doi.org/10.1007/s00299-015-1743-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-015-1743-7

Keywords

Navigation