Skip to main content
Log in

Xcc-facilitated agroinfiltration of citrus leaves: a tool for rapid functional analysis of transgenes in citrus leaves

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Xanthomonas citri subsp. citri pretreatment before agroinfiltration could significantly promote transient expression in citrus leaves which were previously recalcitrant to agroinfiltration.

Abstract

Transient expression via agroinfiltration is widely used in biotechnology but remains problematic in many economically important plants. Xanthomonas citri subsp. citri (Xcc)-facilitated agroinfiltration was employed to promote transient protein expression in Valencia sweet orange leaves, which are recalcitrant to agroinfiltration. However, it is unclear whether Xcc-facilitated agroinfiltration has broad application, i.e., whether Xcc-facilitated agroinfiltration could be used on other citrus varieties. In addition, we intended to investigate whether Xcc-facilitated agroinfiltration could be used to hasten transgene function assays, e.g., Cre/lox system and Cas9/sgRNA system. In this report, Xcc-facilitated agroinfiltration was further exploited to enhance β-glucuronidase (GUS) expression in five citrus varieties. Xcc-facilitated agroinfiltration also significantly increased GFP expression in six citrus varieties tested. Both GUS and GFP assays indicated that Xcc-facilitated agroinfiltration had the best performance in grapefruit. After Xcc-facilitated agroinfiltration was carried out in grapefruit, protoplast analysis of the transformed cells indicated that there were more than 20 % leaf cells expressing GFP. In grapefruit, usefulness of Xcc-facilitated agroinfiltration was assayed in three case studies: (1) fast functional analysis of Cre/lox system, (2) the heat shock regulation of HSP70B promoter derived from Arabidopsis, and (3) Cas9/sgRNA-mediated genome modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AtHSP70BP:

The Arabidopsis heat shock-regulated protein 70B promoter

CaMV 35S:

The cauliflower mosaic virus 35S promoter

GFP:

Green fluorescent protein

GUS:

β-Glucuronidase

NosT:

The nopaline synthase gene terminator

PDS:

Phytoene desaturase

35T:

The cauliflower mosaic virus 35S terminator

Xcc:

Xanthomonas citri subsp. citri

References

  • Ahmad M, Mirza B (2005) An efficient protocol for transient transformation of intact fruit and transgene expression in citrus. Plant Mol Biol Report 23:419a–419k

    Article  Google Scholar 

  • Belhai K, Chaparro-Garcia A, Kamoun S, Nekrasov V (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9:39

    Article  Google Scholar 

  • Chen Q, Lai H, Hurtado J, Stahnke J, Leuzinger K, Dent M (2013) Agroinfiltration as an effective and scalable strategy of gene delivery for production of pharmaceutical proteins. Adv Tech Biol Med 1:103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chong Perez B, Reyes M, Rojas L, Ocana B, Ramos A, Kosky RG, Angenon G (2013) Excision of a selectable marker gene in transgenic banana using a Cre/lox system controlled by an embryo specific promoter. Plant Mol Biol 83:143–152

    Article  CAS  PubMed  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu P, Wu X, Jiang W, Marraffini L, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dale EC, Ow DW (1991) Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci USA 88:10558–10562

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Febres V, Fisher L, Khalaf A, Moore GA (2011) Citrus Transformation: Challenges and Prospects, Genetic Transformation, Prof. MarÃ-a Alvarez (Ed.), ISBN: 978-953-307-364-4, InTech, doi: 10.5772/24526. Available from: http://www.intechopen.com/books/genetic-transformation/citrus-transformation-challenges-and-prospects

  • Figueiredo JFL, Romer P, Lahaye T, Graham JH, White FF, Jones JB (2011) Agrobacterium—mediated transient expression in citrus leaves: a rapid tool for gene expression and functional gene assay. Plant Cell Rep 30:1339–1345

    Article  CAS  PubMed  Google Scholar 

  • Gelvin SB (2003) Improving plant genetic engineering by manipulating the host. Trends Biotechnol 21:95–98

    Article  CAS  PubMed  Google Scholar 

  • Gottwald TR, Graham JH, Schubert TS (2002) Citrus canker: the pathogen and its impact. Online. Plant Health Prog. doi:10.1094/PHP-2002-0812-01-RV

  • Graham JH, Gottwald TR, Cubero J, Achor DS (2004) Xanthomonas axonopodis pv. citri: factors affecting successful eradication of citrus canker. Mol Plant Pathol 5:1–15

    Article  PubMed  Google Scholar 

  • Grosser JW, Gmitter FG, Tusa N, Chandler JL (1990) Somatic hybrid plants from sexually incompatible woody species: citrus reticulata and Citropsis gilletiana. Plant Cell Rep 8:656–659

    Article  CAS  PubMed  Google Scholar 

  • Hansen G, Das A, Chilton MD (1994) Constitutive expression of the virulence genes improves the efficiency of plant transformation by Agrobacterium. Proc Natl Acad Sci USA 91:7603–7607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoa TTC, Bong BB, Huq E, Hodges TK (2002) Cre/lox site-specific recombination controls the excision of a transgene from the rice genome. Theor Appl Genet 104:518–525

    Article  CAS  PubMed  Google Scholar 

  • Hoess RH, Ziese M, Sternberg N (1982) Pl site-specific recombination: nucleotide sequence of the recombining sites. Proc Natl Acad Sci USA 79:3398–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu Y, Zhang J, Jia H, Sosso D, Li T, Frommer WB, Yang B, White FF, Wang N, Jones JB (2014) Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease. Proc Natl Acad Sci USA 111:E521–E529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jia H, Wang N (2014) Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS One 9:e93806

    Article  PubMed Central  PubMed  Google Scholar 

  • Jia HG, Lü LF, Pang YQ, Chen XY, Fang RX (2004) Using green fluorescent protein as a reporter to monitor elimination of selectable marker genes from transgenic plants. Sheng Wu Gong Cheng Xue Bao 20:10–15

    CAS  PubMed  Google Scholar 

  • Jia H, Pang Y, Chen X, Fang R (2006) Removal of the selectable marker gene from transgenic tobacco plants by expression of Cre recombinase from a tobacco mosaic virus vector through agroinfection. Transgenic Res 15:375–384

    Article  CAS  PubMed  Google Scholar 

  • Lacroix B, Tzfira T, Vainstein A, Citovsky V (2006) A case of promiscuity: agrobacterium’s endless hunt for new partners. Trends Genet 22:29–37

    Article  CAS  PubMed  Google Scholar 

  • Leuzinger K, Dent M, Hurtado J, Stahnke J, Lai H, Zhou X, Chen Q (2013) Efficient agroinfiltration of plants for high-level transient expression of recombinant proteins. J Vis Exp 77:e50521. doi:10.3791/50521

    Google Scholar 

  • Mysore KS, Nam J, Gelvin SB (2000) An Arabidopsis histone H2A mutant is deficient in Agrobacterium T-DNA integration. Proc Natl Acad Sci USA 97:948–953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Orzaez D, Mirabel S, Wieland WH, Granell A (2006) Agroinjection of tomato fruits. A tool for rapid functional analysis of transgenes directly in fruit. Plant Physiol 140:3–11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sauer B (1987) Functional expression of the cre-lox site-specific recombination system in the yeast Saccharomyces cerevisiae. Mol Cell Biol 7:2087–2096

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sendín LN, Filippone MP, Orce IG, Rigano L, Enrique R, Peña R, Vojnov AA, Marano MR, Castagnaro AP (2012) Transient expression of pepper Bs2 gene in Citrus limon as an approach to evaluate its utility for management of citrus canker disease. Plant Pathol 61:648–657

    Article  Google Scholar 

  • Sheludko YV (2008) Agrobacterium-mediated transient expression as an approach to production of recombinant proteins in plants. Recent Pat Biotechnol 2:198–208

    Article  CAS  PubMed  Google Scholar 

  • Sternberg N, Hamilton D (1981) Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. J Mol Biol 150:467–486

    Article  CAS  PubMed  Google Scholar 

  • Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331–338

    Article  CAS  PubMed  Google Scholar 

  • Wroblewski T, Tomczak A, Michelmore R (2005) Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol J 3:259–273

    Article  CAS  PubMed  Google Scholar 

  • Yan Q, Wang N (2012) High-throughput screening and analysis of genes of Xanthomonas citri subsp. citri involved in citrus canker symptom development. MPMI 25:69–84

    Article  CAS  PubMed  Google Scholar 

  • Yasmin A, Debener T (2010) Transient gene expression in rose petals via Agrobacterium infiltration. Plant Cell Tissue Organ Cult 102:245–250

    Article  CAS  Google Scholar 

  • Zhang W, Subbarao S, Addae P, Shen A, Armstrong C, Peschke V, Gilbertson L (2003) Cre/lox mediated marker gene excision in transgenic maize (Zea mays L.) plants. Theor Appl Genet 107:1157–1168

    Article  CAS  PubMed  Google Scholar 

  • Zottini M, Barizza E, Costa A, Formentin E, Ruberti C, Carimi F, Lo Schiavo F (2008) Agroinfiltration of grapevine leaves for fast transient assays of gene expression and for long-term production of stable transformed cells. Plant Cell Rep 27:845–853

    Article  CAS  PubMed  Google Scholar 

  • Zou X, Peng A, Xu L, Liu X, Lei T, Yao L, He Y, Chen S (2013) Efficient auto-excision of a selectable marker gene from transgenic citrus by combining the Cre/loxP system and ipt selection. Plant Cell Rep 32:1601–1613

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Rongxiang Fang for kindly providing pGNG and pCambia1300-Cre. We thank Lisa Malyak for critical reading of this manuscript. This research has been supported by grant from the Citrus Research and Development Foundation.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nian Wang.

Additional information

Communicated by Leandro Peña.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, H., Wang, N. Xcc-facilitated agroinfiltration of citrus leaves: a tool for rapid functional analysis of transgenes in citrus leaves. Plant Cell Rep 33, 1993–2001 (2014). https://doi.org/10.1007/s00299-014-1673-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-014-1673-9

Keywords

Navigation