Skip to main content
Log in

Plant chitinase responses to different metal-type stresses reveal specificity

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Chitinases in Glycine max roots specifically respond to different metal types and reveal a polymorphism that coincides with sensitivity to metal toxicity.

Abstract

Plants evolved various defense mechanisms to cope with metal toxicity. Chitinases (EC 3.2.1.14), belonging to so-called pathogenesis-related proteins, act as possible second line defense compounds in plants exposed to metals. In this work their activity was studied and compared in two selected soybean (Glycine max L.) cultivars, the metal-tolerant cv. Chernyatka and the sensitive cv. Kyivska 98. Roots were exposed to different metal(loid)s such as cadmium, arsenic and aluminum that are expected to cause toxicity in different ways. For comparison, a non-metal, NaCl, was applied as well. The results showed that the sensitivity of roots to different stressors coincides with the responsiveness of chitinases in total protein extracts. Moreover, detailed analyses of acidic and neutral proteins identified one polymorphic chitinase isoform that distinguishes between the two cultivars studied. This isoform was stress responsive and thus could reflect the evolutionary adaptation of soybean to environmental cues. Activities of the individual chitinases were dependent on metal type as well as the cultivar pointing to their more complex role in plant defense during this type of stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Al:

Aluminum

As:

Arsenic

Cd:

Cadmium

MDA:

Malondialdehyde

SSR:

Simple sequence repeat

References

  • Amaya I, Botella MA, de la Calle M, Medina MI, Heredia A, Bressan RA, Hasegawa PM, Quesada MA, Valpuesta V (1999) Improved germination under osmotic stress of tobacco plants overexpressing a cell wall peroxidase. FEBS Lett 457:80–84

    Article  PubMed  CAS  Google Scholar 

  • Appenroth K-J (2010) Definition of “heavy metals” and their role in biological systems. In: Sherameti I, Varma A (eds) Soil heavy metals. Springer, Berlin Heidelberg, pp 19–29

    Chapter  Google Scholar 

  • Baker CJ, Mock NM (1994) An improved method for monitoring cell-death in cell-susspension and leaf disc assays using Evans Blue. Plant Cell Tiss Org Cult 39:7–12

    Article  Google Scholar 

  • Balestri M, Ceccarini A, Forino LMC, Zelko I, Martinka M, Lux A, Ruffini Castiglione M (2014) Cadmium uptake, localization and stress-induced morphogenic response in the fern Pteris vittata. Planta 239:1055–1064

    Article  PubMed  CAS  Google Scholar 

  • Békésiová I, Nap JP, Mlynárová L (1999) Isolation of high quality DNA and RNA from leaves of the carnivorous plant Drosera rotundifolia. Plant Mol Biol Rep 17:269–277

    Article  Google Scholar 

  • Békésiová B, Hraška S, Libantová J, Moravčíková J, Matušíková I (2008) Heavy-metal stress induced accumulation of chitinase isoforms in plants. Mol Biol Rep 35:579–588

    Article  PubMed  Google Scholar 

  • Boscolo PRS, Menossi M, Jorge RA (2003) Aluminum-induced oxidative stress in maize. Phytochemistry 62:181–189

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bruce TJA, Matthes MC, Napier JA, Pickett JA (2007) Stressful “memories” of plants: evidence and possible mechanisms. Plant Sci 173:603–608

    Article  CAS  Google Scholar 

  • Chandran D, Sharopova N, VandenBosch KA, Garvin DF, Samac DA (2008) Physiological and molecular characterization of aluminum resistance in Medicago truncatula. BMC Plant Biol 8:89

    Article  PubMed  PubMed Central  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486

    Article  PubMed  CAS  Google Scholar 

  • Corrales I, Poschenrieder C, Barcelo J (2008) Boron-induced amelioration of aluminium toxicity in a monocot and a dicot species. J Plant Physiol 165:504–513

    Article  PubMed  CAS  Google Scholar 

  • Dana MM, Pintor-Toro JA, Cubero B (2006) Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiol 142:722–730

    Article  PubMed Central  Google Scholar 

  • Dobroviczká T, Piršelová B, Mészáros P, Blehová A, Libantová J, Moravčiková J, Matušíková I (2013) EffectS of cadmium and arsenic ions on content of photosynthetic pigments in the leaves of Glycine max (L.) Merrill. Pak J Bot 45:105–110

    Google Scholar 

  • Drličková G, Vaculik M, Matejkovič P, Lux A (2013) Bioavailability and toxicity of arsenic in maize (Zea mays L.) grown in contaminated soils. Bull Environ Contam Toxicol 91:235–239

    Article  PubMed  Google Scholar 

  • Fecht-Christoffers MM, Braun HP, Lemaitre-Guillier C, VanDorsselaer A, Horst WJ (2003) Effect of manganese toxicity on the proteome of the leaf apoplast in cowpea. Plant Physiol 133:1935–1946

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fojtova M, Kovarik A (2000) Genotoxic effect of cadmium is associated with apoptotic changes in tobacco cells. Plant Cell Environ 23:531–537

    Article  CAS  Google Scholar 

  • Gaur N, Flora G, Yadav M, Tiwari A (2014) A review with recent advancements on bioremediation-based abolition of heavy metals. Environ Sci Process Impacts 16:180–193

    Article  PubMed  CAS  Google Scholar 

  • Grennan AK (2011) Metallothioneins, a diverse protein family. Plant Physiol 155:1750–1751

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  PubMed  CAS  Google Scholar 

  • Hurkman WJ, Tanaka CK (1986) Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol 81:802–806

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jegadeesan S, Yu K, Poysa V, Gawalko E, Morrison MJ, Shi C, Cober E (2010) Mapping and validation of simple sequence repeat markers linked to a major gene controlling seed cadmium accumulation in soybean Glycine max (L.) Merr. Theor Appl Genet 121:283–294

    Article  PubMed  CAS  Google Scholar 

  • Karabal E, Yucel M, Oktem HA (2003) Antioxidant responses of tolerant and sensitive barley cultivars to boron toxicity. Plant Sci 164:925–933

    Article  CAS  Google Scholar 

  • Kieffer P, Dommes J, Hoffmann L, Hausman JF, Renaut J (2008) Quantitative changes in protein expression of cadmium-exposed poplar plants. Proteomics 8:2514–2530

    Article  PubMed  CAS  Google Scholar 

  • Kochian LV, Pineros MA, Hoekenga OA (2005) The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil 274:175–195

    Article  CAS  Google Scholar 

  • Konotop Y, Mészáros P, Spiess N, Mistríková V, Piršelová B, Libantová J, Moravčíková J, Taran N, Hauptvogel P, Matušíková I (2012) Defense responses of soybean roots during exposure to cadmium, excess of nitrogen supply and combinations of these stressors. Mol Biol Rep 39:10077–10087

    Article  PubMed  CAS  Google Scholar 

  • Krupa Z, Baszynski T (1995) Some aspects of heavy-metals toxicity towards photosynthetic apparatus—direct and indirect effects on light and dark reactions. Acta Biol Plantarum 17:177–190

    CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lindberg S, Greger M (2002) Plant genotypic differences under metal deficient and enriched conditions. In: Prasad MNV, Strzaka K (eds) Physiology and chemistry of metal toxicity and tolerance in plants. Kluwer, Amsterdam, pp 368–394

    Google Scholar 

  • Lindberg S, Griffiths G (1993) Aluminum effects on ATPase activity and lipid composition of plasma membranes in sugar beet roots. J Exp Bot 44:1543–1550

    Article  CAS  Google Scholar 

  • Macnair MR, Bert V, Huitson SB, Saumitou-Laprade P, Petit D (1999) Zinc tolerance and hyperaccumulation are genetically independent characters. Proc Royal Soc B Biol Sci 266:2175–2179

    Article  CAS  Google Scholar 

  • Marek SM, Roberts CA, Karr AL, Sleper DA (2000) Seedling development, and ethephon. Crop Sci 40:713–716

    Article  CAS  Google Scholar 

  • Martinez Dominguez D, Cordoba Garcia F, Canalejo Raya A, Torronteras Santiago R (2010) Cadmium-induced oxidative stress and the response of the antioxidative defense system in Spartina densiflora. Physiol Plant 139:289–302

    PubMed  CAS  Google Scholar 

  • Mascher R, Lippmann B, Holzinger S, Bergmann H (2002) Arsenate toxicity: effects on oxidative stress response molecules and enzymes in red clover plants. Plant Sci 163:961–969

    Article  CAS  Google Scholar 

  • Mészáros P, Rybanský L, Hauptvogel P, Kuna R, Libantová J, Moravčíková J, Piršelová B, Tirpaková A, Matušíková I (2013) Cultivar-specific kinetics of chitinase induction in soybean roots during exposure to arsenic. Mol Biol Rep 40:2127–2138

    Article  PubMed  Google Scholar 

  • Metwally A, Safronova VI, Belimov AA, Dietz KJ (2005) Genotypic variation of the response to cadmium toxicity in Pisum sativum. J Exp Bot 56:167–178

    PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Moravčíková J, Libantová J, Heldák J, Salaj J, Bauer M, Matušíková I, Gálová Z, Mlynárová L (2007) Stress-induced expression of cucumber chitinase and Nicotiana plumbaginifolia beta-1,3-glucanase genes in transgenic potato plants. Acta Biol Plantarum 29:133–141

    Article  Google Scholar 

  • Nakamura Y, Ki Ohba, Ohta H (2012) Participation of metal transporters in cadmium transport from mother rat to fetus. J Toxicol Sci 37:1035–1044

    Article  PubMed  CAS  Google Scholar 

  • Pan SQ, Ye XS, Kuc J (1991) A technique for detection of chitinase, beta-1,3-glucanase, and protein- patterns after a single separation using polyacrylamide-gel electrophoresis or isoelectrofocusing. Phytopathology 81:970–974

    Article  CAS  Google Scholar 

  • Passarinho PA, Van Hengel AJ, Fransz PF, de Vries SC (2001) Expression pattern of the Arabidopsis thaliana AtEP3/AtchitIV endochitinase gene. Planta 212:556–567

    Article  PubMed  CAS  Google Scholar 

  • Patra M, Bhowmik N, Bandopadhyay B, Sharma A (2004) Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ Exp Bot 52:199–223

    Article  CAS  Google Scholar 

  • Pérez-Chaca MV, Rodríguez-Serrano M, Molina AS, Pedranzani HE, Zirulnik F, Sandalio LM, Romero-Puertas MC (2014) Cadmium induces two waves of reactive oxygen species in Glycine max (L.) roots. Plant Cell Environ 37:1672–1687

    Article  PubMed  Google Scholar 

  • Piršelová B, Matušíková I (2011) Plant defense against heavy metals: the involvement of pathogenesis-related (PR) proteins. In: Awaad AS, Kaushik G, Govil JN (eds) Recent progress in medicinal plant: mechanism and action of phytoconstituents. Studium Press LLC, USA, pp 179–205

    Google Scholar 

  • Piršelová B, Kuna R, Libantová J, Moravčíková J, Matušíková I (2011) Biochemical and physiological comparison of heavy metal-triggered defense responses in the monocot maize and dicot soybean roots. Mol Biol Rep 38:3437–3446

    Article  PubMed  Google Scholar 

  • Qiu J, Hallmann J, Kokalis-Burelle N, Weaver DB, Rodriguez-Kabana R, Tuzan S (1997) Activity and differential induction of chitinase isozymes in soybean cultivars resistant or susceptible to root-knot nematodes. J Nematol 29:523–530

    CAS  Google Scholar 

  • Rout GR, Samantaray S, Das P (2001) Aluminium toxicity in plants: a review. Agronomie 21:3–21

    Article  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  PubMed  Google Scholar 

  • Sels J, Mathys J, De Coninck BMA, Cammue BPA, De Bolle MFC (2008) Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol Biochem 46:941–950

    Article  PubMed  CAS  Google Scholar 

  • Sethy SK, Ghosh S (2013) Effect of heavy metals on germination of seeds. J Nat Sci Biol Med 4:272–275

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Singh PK, Tewari RK (2003) Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. J Environ Biol 24:107–112

    PubMed  CAS  Google Scholar 

  • Skorzynska-Polit E, Krupa Z (2006) Lipid peroxidation in cadmium-treated Phaseolus coccineus plants. Arch Environ Con Tox 50:482–487

    Article  CAS  Google Scholar 

  • Sobrino-Plata J, Meyssen D, Cuypers A, Escobar C, Hernández LE (2014) Glutathione is a key antioxidant metabolite to cope with mercury and cadmium stress. Plant Soil 377:369–381

    Article  CAS  Google Scholar 

  • Song WY, Mendoza-Cózatl DG, Lee Y, Schroeder JI, Ahn SN, Lee HS, Wicker T, Martinoia E (2014) Phytochelatin-metal(loid) transport into vacuoles shows different substrate preferences in barley and Arabidopsis. Plant Cell Environ 37:1192–1201

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tamari Y, Takada A, Tsuji H, Kusaka Y (1988) Determination of ppb level of arsenic(V) based on fluorescence quenching of thorium-morin chelate. Anal Sci 4:277–280

    Article  CAS  Google Scholar 

  • Tamás L, Šimonovičová M, Huttová J, Mistrík I (2004) Aluminium stimulated hydrogen peroxide production of germinating barley seeds. Environ Exp Bot 51:281–288

    Article  Google Scholar 

  • Tamás L, Dudíková J, Durčeková K, Halugková Lu, Huttová J, Mistrík I, Ollé M (2008) Alterations of the gene expression, lipid peroxidation, proline and thiol content along the barley root exposed to cadmium. J Plant Physiol 165:1193–1203

    Article  PubMed  Google Scholar 

  • Trudel J, Asselin A (1989) Detection of chitinase activity after polyacrylamide gel electrophoresis. Anal Biochem 178:362–366

    Article  PubMed  CAS  Google Scholar 

  • Willems G, Frerot H, Gennen J, Salis P, Saumitou-Laprade P, Verbruggen N (2010) Quantitative trait loci analysis of mineral element concentrations in an Arabidopsis halleri x Arabidopsis lyrata petraea F-2 progeny grown on cadmium-contaminated soil. New Phytol 187:368–379

    Article  PubMed  CAS  Google Scholar 

  • Xie ZP, Staehelin C, Wiemken A, Broughton WJ, Muller J, Boller T (1999) Symbiosis-stimulated chitinase isoenzymes of soybean (Glycine max (L.) Merr.). J Exp Bot 50:327–333

    CAS  Google Scholar 

  • Yamamoto Y, Kobayashi Y, Matsumoto H (2001) Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiol 125:199–208

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yang Y-J, Cheng L-M, Liu Z-H (2007) Rapid effect of cadmium on lignin biosynthesis in soybean roots. Plant Sci 172:632–639

    Article  CAS  Google Scholar 

  • Yu ZJ, Yang XD, Wang K (2006) Metal ions induced heat shock protein response by elevating superoxide anion level in HeLa cells transformed by HSE-SEAP reporter gene. Toxicology 223:1–8

    Article  PubMed  CAS  Google Scholar 

  • Zur I, Gołebiowska G, Dubas E, Golemiec E, Matušíková I, Libantová J, Moravčíková J (2013) β-1,3-glucanase and chitinase activities in winter triticales during cold hardening and subsequent infection by Microdochium nivale. Biologia (Poland) 68:241–248

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Slovak Grant Agency VEGA No. 2/0062/11 and 1/0509/12. Financial support for P. Socha was provided by the Operational Programme Research and Development for the project: “Implementation of the research of plant genetic resources and its maintaining in the sustainable management of Slovak republic” (ITMS: 26220220097), co-financed from the resources of the European Union Fund for Regional Development. The support of COST Action FA 13006 is also acknowledged.

Conflict of interest

The authors report no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ildikó Matušíková.

Additional information

Communicated by Kathryn K. Kamo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1

Tolerance indexes of roots of tested soybean cultivars in response to the applied stressors. Supplementary material 1 (DOC 709 kb)

Electronic supplementary material 2

DNA-marker based characterization of soybean cultivars for cadmium accumulation potential. Supplementary material 2 (DOC 1,050 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mészáros, P., Rybanský, Ľ., Spieß, N. et al. Plant chitinase responses to different metal-type stresses reveal specificity. Plant Cell Rep 33, 1789–1799 (2014). https://doi.org/10.1007/s00299-014-1657-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-014-1657-9

Keywords

Navigation